
Physics 195a
Problem set number 6 – Solutions to Problems 33 and 34

Due 2 PM, Thursday, November 14, 2002

READING: Read the “The Simple Harmonic Oscillator: Creation and De-
struction Operators” course note.

PROBLEMS:

30. K0 system in density matrix formalism: Exercise 2 of the K0 course
note.

31. [Worth two problems] “Regeneration”: Exercise 3 of the K0 course
note.

32. Qualitative features of wave functions: Exercise 1 of the Harmonic
Oscillator course note.

33. One of the failings of classical mechanics is that matter should be
“unstable”. Let us investigate this in the following system: Consider
a system consisting of N particles with masses mk and charges qk,
k = 1, 2, . . . , N , where we suppose some of the charges are positive and
some negative. The Hamiltonian of this multiparticle system is:

H =
N∑

k=1

p2
k

2mk
+

∑
N≥j>k≥1

qkqj
|xk − xj | ,

where pk = |pk| is the magnitude of the momentum of the particle
labelled “k”.

(a) Assume we have solved the equations of the motion, with solutions
xk = sk(t). Show that for any ω > 0 we can select a number c > 0
such that xk = csk(ωt) is also a solution of the equations of motion.
Remember, we are dealing with the classical equations of motion
here.

Solution: The solutions sk(t) must satisfy “F = ma”, that is:

∑
j �=i

qiqj
|si − sj|3 (si − sj) = mi

d2

dt2
si(t). (10)

14



Let xi(t) = csi(ωt). Then,

d2

dt2
xi(t) = ω

2c
d2

dt2
si(t). (11)

Also,

∑
j �=i

qiqj
|xi − xj|3 (xi − xj) =

1

c2
∑
j �=i

qiqj
|si − sj |3 (si − sj). (12)

Thus, if ω2c = 1/c2, then cfxi is also a solution.

(b) Find scaling laws relating the total energy, total momentum, to-
tal angular momentum, position of an individual particle, and
momentum of an individual particle for the original sk(t) solution
and the scaled csk(ωt) solution. The only parameter in your scal-
ing laws should be ω. Make sure that any time dependence is
clearly stated.

Solution: With c = ω−2/3 the position of a particle scales as:

xk(t) = ω
−2/3sk(ωt). (13)

The momentum of a particle scales as:

p(t) → p′(t) = mi
d

dt
xk(t) = miω

−2/3 d

dt
sk(ωt) = ω

1/3p(ωt). (14)

The total momentum is a constant of the motion, and scales as:

P → P′ =
∑
k

p′
k(t) = ω

1/3P. (15)

The total energy is a constant of the motion, and scales as:

E → E ′ =
∑
k

[p′
k(t)]

2

mk
+

1

2

∑
j,k;j �=k

gjqk
|xk − xj | = ω

2/3E. (16)

The total angular momentum is a constant of the motion, scaling
like r × p:

L → L′ = ω−1/3L. (17)
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(c) Hence, draw the final conclusion that there does not exist any
stable “ground state” of lowest energy. As an aside, what Kepler’s
law follows from your analysis?

Solution: If we have any bound state with E < 0, such as for
two particles when qj = −qk, then we have another solution with
energy ω2/3E. Since ω can be taken arbitrarily large, there is no
lowest energy solution.

The Kepler’s law that follows from this analysis is the third: The
size of a trajectory scales as ω−2/3. The period of the trajectory
scales as 1/ω. Thus, if a is the semi-major axis of the orbit, and
τ is the period,

a ∝ ω−2/3 (18)

τ ∝ ω−1 (19)

∝ a3/2. (20)

(d) We assert that quantum mechanics does not suffer from this dis-
ease, but this must be proven. You have seen (or, if not, see the
following problem) the analysis for the hydrogen atom in quan-
tum mechanics, and know that it has a ground state of finite
energy. However, it might happen for larger systems that sta-
bility is lost in quantum mechanics – there are typically several
negative terms in the potential function which could win over the
postive kinetic energy terms. We wish to prove that this is, in fact,
not the case. The Hamiltonian is as above, but now pk = −i∂k
(∂k = ( ∂

∂xk
, ∂

∂yk
, ∂

∂zk
)).

Find a rigorous lower bound on the expectation value of H . It
doesn’t have to be very “good”– any lower bound will settle this
question of principle. You may take it as given that the lower
bound exists for the hydrogen atom, since we have already demon-
strated this. You may also find it convenient to consider center-
of-mass and relative coordinates between particle pairs.

Solution: We know that the energy spectrum of the one-electron
atom is bounded below. Thus, the Hamiltonian

H1 =
p2

2m
− Ze2

|x| , (21)
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has a lower bound on the energy. For any acceptable wave function
|f1〉, we have

〈f1|H1|f1〉 ≥ −Z2α2m/2. (22)

We will make use of this in analyzing our more complicated sys-
tem.

We must consider the Hamiltonian

H =
N∑

k=1

p2
k

2mk
+

∑
N≥j>k≥1

qkqj
|xk − xj| . (23)

Let f(x) be any wave function in the allowed Hilbert space, nor-
malized so that 〈f |f〉 = 1. We wish to show that 〈f |H|f〉 > −∞.
We already know that some of the individual terms are bounded
below by zero:

〈f |
N∑

k=1

p2
k

2mk
|f〉 ≥ 0 (24)

〈f | ∑
N≥j>k≥1

qkqj
|xk − xj | |f〉 ≥ 0, for qkqj ≥ 0. (25)

We must concentrate our energy on those terms in the potential
energy with opposite charge particles.

The total energy is the sum of the individual expectation values.
If we can show that no term goes to −∞, then the sum will also
be bounded below (since the number of terms is finite). Con-
sider particle j. Suppose there are nj particles with sign opposite
to particle j. Suppose that particle k is one such particle. We
can thus write each the the potentially troublesome terms in the
Hamiltonian in the form of a two-particle problem with Hamil-
tonian:

Hjk =
1

nj

p2
j

2mj

+
1

nk

p2
k

2mk

− |qjqk|
|xj − xk| . (26)

We have arranged it such that the total Hamiltonian includes a
term of this form for each pair of oppositely charged particles,
and all of the potentially troublesome terms are included as terms
of this form. Note that this piece of the total Hamiltonian is
the Hamiltonian for two particles of masses njmj and nkmk, and
charges qj and qk.
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We may rewrite Hjk in terms of the relative and center-of-mass
motion of the two-particle subsystem: Hjk = H

jk;CM + H
jk;rel,

where

H
jk;CM =

(pj + pk)
2

2(njmj + nkmk)
(27)

H
jk;rel =

p2

2m
− |qjqk|

|x| , (28)

where x ≡ xj − xk, m = njnkmjmk/(njmj + nkmk), and p =
(nkmkpj − njmjpk)/(njmj + nkmk).

Since H
jk;CM involves the square of a Hermitian operator, its

spectrum is non-negative. If we can show that the spectrum of
H

jk;rel is bounded below, then we will have completed our task.
We achieve this by noting the similarity with the Hamiltonian for
the one-electron atom:

〈f |H
jk;rel|f〉 ≥ −(qjqk)

2m

2
. (29)

There are finite many terms of this form, all other contributions
are non-negative. Therefore,

〈f |H|f〉 > −∞. (30)

34. The one-electron atom (review?): Continuing from problem 29, now
consider the case of the one-electron atom, with an electron under the
influence of a Coulomb field due to the nucleus of charge Ze:

V (r) = −Ze
2

r
, (31)

(a) Without knowing the details of the potential, we may evaluate
the form of the radial wave function (Rn(r) = un(r)/r, where
ψnm(x) = Rn(r)Ym(θ, φ)) for small r, as long as the potential
depends on r more slowly than 1/r2. Here, n is a quantum number
for the radial motion. Likewise, we find the asymptotic form of
the wave function for large r, as long as the potential approaches
zero as r becomes large. Find the allowable forms for the radial
wave functions in these two limits.
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Solution: In problem 29, we showed that we could write the
Schrödinger equation for the relative motion in the form:[

− 1

2m

d2

dr2
+ V (r) +

&(&+ 1)

2mr2

]
un(r) = Eun(r). (32)

We wish to find the solution for small r. If we multiply the equa-
tion through by r2, and assume that r2V (r) → 0 as r → 0, then
we have the approximate equation for small r:[

− 1

2m

d2

dr2
+
&(&+ 1)

2mr2

]
un(r) = 0 (33)

The solutions are un(r) ∝ r+1, and un(r) ∝ r−. The normal-
ization condition is: ∫

(∞)
|ψ(x)|2 = 1. (34)

Since the Ym functions are normalized to one themselves, the
radial portion of the wave function is normalized as:

1 =
∫ ∞

0
r2|Rn|2dr =

∫ ∞

0
|un(r)|2 dr. (35)

For & > 0, the r− solution diverges too rapidly near r = 0 for this
normalization condition.

The situation for & = 0 is more subtle. Often, this is glossed over,
and people just lump it in with the & > 0 case, but the same
argument for excluding the r0 solution really doesn’t work. For
this case, un0(r) = constant, and hence, ψn0(x) ∝ 1/r at small r.
But

∇2
(
1

r

)
= −4πδ(r), (36)

so this solution doesn’t satisfy the Schödinger equation at r = 0.

Thus, the physical solution is un(r) ∝ r+1 as r → 0. Or,
ψn(x) ∝ r as r → 0. For & > 0, ψn → 0, and for & = 0,
ψn → constant, as r → 0.

Now consider large r, and assume V (r) → 0 as r → ∞. Then the
asymptotic Schrödinger equation is:

− 1

2m

d2

dr2
un(r) = Eun(r). (37)
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The solutions to this equation are:

un(r) ∝ e±ikr, E =
k2

2m
, for E > 0; (38)

un(r) ∝ e−κr, E = − κ2

2m
, for E < 0. (39)

The E < 0 solutions are the bound states (κ > 0). Note that the
e+κr solutions are unnormalizable. The asymptotic wave functions
are thus of the form e±ikr/r (spherical waves outgoing or incoming)
for the unbound states, and of the form e−κr/r for the bound
states.

One final remark: in the asymptotic limit, we can multiply these
solutions by ra, correct to leading order in r.

(b) Find the bound state eigenvalues and eigenfunctions of the one-
electron atom. [Hint: it is convenient to express the wave function,
or rather un, with its asymptotic dependence explicit, so that
may be “divided out” in solving the rest of the problem.] You
may express your answer in terms of the Associated Laguerre
Polynomials:

L2+1
n+ (x) =

n−−1∑
k=0

(−)k+1(n+ &)!

(n− &− 1− k)!(2&+ 1 + k)!k!
xk. (40)

Solution: We look for solutions of the form

ψnm(r, θ, φ) =
un(r)

r
Ym(θ, φ), (41)

where un(r) satisfies the equaivalent one-dimensional Schrödinger
equation:[

− 1

2m

d2

dr2
− Ze2

r
+
&(&+ 1)

2mr2

]
un(r) = Enun(r). (42)

It is generally convenient to put such problems into dimensionless
form. Here, define

κ =
√−8mE (43)

ρ = κr (44)

v(ρ) = un(ρ/κ). (45)
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With these substitutions (the “8” is chosen for later convenience. . . ),
we have the differential equation:

[
d2

dρ2
− λ

ρ
− &(&+ 1)

ρ2
− 1

4

]
v(ρ) = 0, (46)

where we have defined the dimensionless constant:

λ ≡ 2mZe2

κ
. (47)

We take the hint, and put in explicit asymptotic dependence. The
asymptotic equation is:

(
d2

dρ2
− 1

4

)
v(ρ) = 0. (48)

The asymptotic solution is thus:

v(ρ) = ρne−ρ/2, (49)

where ρ is any number. We’ll therefore look for solutions of the
form:

v(ρ) = F (ρ)e−ρ/2, (50)

where f is a power series in ρ of finite order:

F (ρ) = ρ+1(c0 + c1ρ+ c2ρ
2 + . . .+ cnρ

M) (51)

= ρ+1f(ρ), (52)

where the second relation defines f(ρ). The lowest power ρ+1 is
required to to give the right dependence at r = 0, as we determined
in part (a).

The differential equation for F is:

F ′′ − F ′ +

[
λ

ρ
− &(&+ 1)

ρ2

]
F = 0. (53)

This gives the following differential equation satisfied by f(ρ):

ρf ′′ + [2(&+ 1)− ρ] f ′ + (λ− &− 1)f = 0. (54)
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If we plug our series form for f(ρ) into this equation, we find the
recurrence relation for the coeeficients:

ck+1 =
k − λ+ &+ 1

(k + 1)(k + 2&+ 2)
ak. (55)

At this point, it may be demonstrated that the series must indeed
terminate, or else we would obtain an unacceptable asymptotic
form of eρ/2 instead of e−ρ/2.

Assuming k = m is the highest term, we must have, from our
recurrence relation:

aM+1 = 0 =
M − λ+ &+ 1

(M + 1)(M + 2&+ 2)
aM . (56)

Thus, n = λ − & − 1. Since & and n are non-negative integers,
λ must also be an integer, with λ ≥ 1. Lambda is known as
the principal quantum number (np), and M is known as the
radial quantum number (nr). Since λ can only take on discrete
values, we have the quantization of the energy levels:

Eλ = −Z
2e4

2

m

λ2
, λ = 1, 2, . . . . (57)

For Z = 1 and λ = 1 this gives the familiar E1 = −13.6 eV ground
state energy of hydrogen.

The differential equation for f is known as the Associated La-
guerre Equation. It may readily be verified that the coefficients
in the associated Laguerre polynomials given in the problem state-
ment satisfy the desired recurrence relation, hence the radial wave
function is given by (after properly normalizing):

Rnp(r) =

(
2Z

npa0

)3/2
√√√√ (np − &− 1)!

2np [(np + &)!]
3ρ

e−ρ/2L2+1
np+(ρ), (58)

where

ρ =
2Z

na0
r, (59)

a0 =
1

me2
=

1

mα
, is the Bohr radius. (60)

22


