
Chapter 7

Density Estimation

Frank Porter March 1, 2011

Density estimation deals with the problem of estimating probability density
functions based on some data sampled from the PDF. It may use assumed forms
of the distribution, parameterized in some way (parametric statistics), or it may
avoid making assumptions about the form of the PDF (non-parametric statis-
tics). We have already discussed parametric statistics, now we are concerned
more with the non-parametric case. As we’ll see, in some ways these aren’t
such distinct concepts. In either case, we are trying to learn about the sampling
distribution.

Non-parametric estimates may be useful when the form of the distribution
(up to a small number of parameters) is not known or readily calculable. They
may be useful for comparison with models, either parametric or not. For exam-
ple, the ubiquitous histogram is a form of non-parametric density estimator (if
normalized to unit area). Non-parametric density estimators may be easier or
better than parametric modeling for efficiency corrections or background sub-
traction. More generally, they may be useful in “unfolding” experimental effects
to learn about some distribution of more fundamental interest. These estimates
may also be useful for visualization (again, the example of the histogram is no-
table). Finally, we note that such estimates can provide a means to compare
two sampled datasets.

The techniques of density estimation may be useful as tools in the context of
parametric statistics. For example, suppose we wish to fit a parametric model
to some data. It might happen that the model is not analytically calculable.
Instead, we simulate the expected distribution for any given set of parameters.
For each set of parameters, we need a new simulation. However, simulations
are necessarily performed with finite statistics, and the resulting fluctuations in
the prediction may lead to instabilities in the fit. Density estimation tools may
be helpful here as “smoothers”, to smooth out the fluctuations in the predicted
distribution.

We’ll couch discussion in terms of a set of observations (dataset) from some
“experiment”. This dataset consists of the values xi; i = 1, 2, . . . , n. Our
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186 CHAPTER 7. DENSITY ESTIMATION

dataset consists of repeated samplings from a (presumed unknown) probability
distribution. The samplings are here assumed to be IID, although we’ll note
generalizations here and there. Order is not important; if we are discussing a
time series, we could introduce ordered pairs {(xi, ti), i = 1, . . . , n}, and call
it two-dimensional, but this case may not be IID, due to correlations in time.
In general, our quantities can be multi-dimensional; no special notation will be
used to distinguish one- from multi-variate cases. We’ll discuss where issues
enter with dimensionality.

When we discussed point estimation, we introduced the hat notation for
an estimator. Here we’ll be concerned with estimators for the density function
itself, hence p̂(x) is a random variable giving our estimate for density p(x).

7.1 Empirical Density Estimate

The most straightforward density estimate is the Empirical Probability Den-
sity Function, or EPDF: Place a delta function at each data point. Explicitly,
this estimator is:

p̂(x) =
1

n

n∑
i=1

δ(x− xi).

Figure 7.1 illustrates an example. Note that x could be multi-dimensional here.
We’ll later find the EPDF used in practice as the sampling density for a proce-
dure known as the bootstrap.

7.2 Histograms

Probably the most familiar density estimator is based on the histogram:

h(x) =

n∑
i=1

B(x− x̃i;w),

where x̃i is the center of the bin in which observation xi lies, w is the bin width,
and

B(x;w) =
{

1 x ∈ (−w/2, w/2)
0 otherwise.

We have already seen this function, called the indicator function, in our proof
of the Central Limit Theorem. Figure 7.2 illustrates the idea in the histogram
context.

This is written for uniform bin widths, but may be generalized to differing
widths with appropriate relative normalization factors. Figure 7.3 provides an
example of a histogram, for the same sample as in Fig. 7.1.
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Figure 7.1: Example of an empirical probability density function. The vertical
axis is such that the points are at infinity, with the “area” under each infinitely
narrow point equal to 1/n. In this example, n = 100. The actual sampling
distribution for this example is a ∆(1232) Breit-Wigner (Cauchy; with pion and
nucleon rest masses subtracted) on a second-order polynomial background. The
probability to be background is 50%.

Given a histogram, the estimator for the probability density function (PDF)
is:

p̂(x) =
1

nw
h(x).

There are some drawbacks to the histogram:

• Discontinuous even if PDF is continuous.

• Dependence on bin size and bin origin.

• Information from location of datum within a bin is ignored.

7.3 Kernel Estimation

Take the histogram, but replace “bin” function B with something else:

p̂(x) =
1

n

n∑
i=1

k(x− xi;w),

where k(x,w) is the “kernel function”, normalized to unity:∫ ∞
−∞

k(x;w) dx = 1.
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Figure 7.2: An indicator function, used in the construction of a histogram.

Usually interested in kernels of the form

k(x− xi;w) =
1

w
K

(
x− xi
w

)
,

indeed this may be used as the definition of “kernel”. The kernel estimator for
the PDF is then:

p̂(x) =
1

nw

n∑
i=1

K

(
x− xi
w

)
,

The role of parameter w as a “smoothing” parameter is apparent. The delta
functions of the empirical distribution are spread over regions of order w.

Often, the particular form of the kernel used doesn’t matter very much.
This is illustrated with a comparison of several kernels (with commensurate
smoothing parameters) in Fig. 7.4.

7.3.1 Multi-Variate Kernel Estimation

Explicit multi-variate case, d = 2 dimensions:

p̂(x, y) =
1

nwxwy

n∑
i=1

K

(
x− xi
wx

)
K

(
y − yi
wy

)
.

This is a “product kernel” form, with the same kernel in each dimension, except
for possibly different smoothing parameters. It does not have correlations. The
kernels we have introduced are classified more explicitly as “fixed kernels”: The
smoothing parameter is independent of x.
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Figure 7.3: Example of a histogram for the data in Fig. 7.1, with binwidth
w = 10.

7.4 Ideogram

A simple variant on the kernel idea is to permit the kernel to depend on addi-
tional knowledge in the data. Physicists call this an ideogram. Most common
is the Gaussian ideogram, in which each data point is entered as a Gaussian
of area one and standard deviation appropriate to that datum. This addresses
a way that the IID assumption might be broken.

The Particle Data Group has used ideograms as a means to convey informa-
tion about possibly inconsistent measurements. Figure 7.5 shows an example of
this. Another example of the use of a Gaussian ideogram is shown in Fig. 7.6.

7.5 Parametric vs non-Parametric Density Esti-
mation

The distinction between parametric and non-parametric is actually fuzzy. A
histogram is non-parametric, in the sense that no assumption about the form of
the sampling distribution is made. Often an implicit assumption is made that
the distribution is “smooth” on a scale smaller than bin size. For example, we
might know something about the resolution of our apparatus and adjust the bin
size to be commensurate. But the estimator of the parent distribution made
with a histogram is parametric – the parameters are populations (or frequencies)
in each bin. The estimators for those parameters are the observed histogram
populations. There are even more parameters than in a typical parametric fit!
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Figure 7.4: Comparison of different kernels.

The essence of the difference may be captured in notions of “local” and “non-
local”: If a datum at xi influences the density estimator at some other point x
this is non-local. A non-parametric estimator is one in which the influence of a
point at xi on the estimate at any x with d(xi, x) > ε vanishes, asymptotically.1

For example, for a kernel estimator, the bigger the smoothing paramter w, the
more non-local the estimator,

p̂(x) =
1

nw

n∑
i=1

K

(
x− xi
w

)
.

7.6 Optimization

We would like to make an optimal density estimate from our data. But we need
to know what this means. We need a criterion for “optimal”. In practice, the
choice of criterion may be subjective; it depends on what you want to achieve.

As a plausible starting point, we may compare the estimator (f̂(x)) for a
quantity (f(x), the value of the density estimator at x) with the true value:

∆(x) = f̂(x)− f(x).

This is illustrated in Fig. 7.7. For a good estimator, we aim for small ∆(x),
called the error in the estimator at point x.

We have seen that a common choice in point estimation is to minimize the
sum of the squares of the deviations, as in a least-squares fit. We may take this

1As we’ll discuss, the “optimal” choice of smoothing parameter depends on n.
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WEIGHTED AVERAGE�
493.664±0.011 (Error scaled by 2.5)

Values above of weighted average, error,�
and scale factor are based upon the data in
this ideogram only.  They are not neces-�
sarily the same as our `best' values,
obtained from a least-squares constrained fit�
utilizing measurements of other (related)
quantities as additional information.

BACKENSTO... 73 0.4
CHENG 75     K Pb  13-12 0.8
CHENG 75     K Pb  12-11 3.6
CHENG 75     K Pb  11-10 0.5
CHENG 75     K Pb  10-9 0.1
CHENG 75     K Pb  9-8 1.1
BARKOV 79 0.0
LUM  81 0.2
GALL 88         K W   11-10 2.2
GALL 88         K W   9-8 0.4
GALL 88         K Pb  11-10 0.2
GALL 88         K Pb  9-8 22.6
DENISOV 91 20.5

2

      52.6
(Confidence Level  0.001)
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mK± (MeV)

Figure 7.5: Example of a gaussian ideogram, from the particle data listings of
the Particle Data Group’s Review of Particle Properties [1].

idea over here, and form the Mean Squared Error (MSE):

MSE[f̂(x)] ≡

〈[
f̂(x)− f(x)

]2〉
= Var[f̂(x)] + Bias2[f̂(x)], (7.1)

where

Var[f̂(x)] ≡ E

[(
f̂(x)− E[f̂(x)]

)2]
(7.2)

Bias[f̂(x)] ≡ E[f̂(x)]− f(x) (7.3)

Since this isn’t quite our familiar parameter estimation, let’s take a little
time to make sure it is understood. Suppose f̂(x) is an estimator for the PDF
f(x), based on data {xi; i = 1, . . . , n}, IID from f(x). Then

E[f̂(x)] =

∫
· · ·
∫
f̂(x; {xi})Prob({xi})dn({xi}) (7.4)

=

∫
· · ·
∫
f̂(x; {xi})

n∏
i=1

[f(xi)dxi] (7.5)
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Figure 1. A histogram of magnetic field values (black),
compared with a smoothed frequency distribution con-
structed using a Gaussian ideogram technique (red).

Figure 7.6: Example of a Gaussian ideogram overlaid on a histogram [2].

As an exercise, we’ll derive Eqn. 7.1:

MSE[f̂(x)] = 〈(f̂(x)− f(x))2〉

=

∫
· · ·
∫ [

f̂(x; {xi})− f(x)
]2 n∏

i=1

[f(xi)dxi]

=

∫
· · ·
∫ [

f̂(x; {xi})− E(f̂(x)) + E(f̂(x))− f(x)
]2 n∏

i=1

[f(xi)dxi]

=

∫
· · ·
∫ { [

f̂(x; {xi})− E(f̂(x))
]2

+
[
E(f̂(x))− f(x)

]2
−2
[
f̂(x; {xi})− E(f̂(x))

] [
E(f̂(x))− f(x)

]} n∏
i=1

[f(xi)dxi]

= Var[f̂(x)] + Bias2[f̂(x)] + 0. (7.6)

In typical treatments of parametric statistics, we assume unbiased estima-
tors, hence the “Bias” term is zero. However, this is not a good assumption
here, as we now demonstrate. This is a fundamental problem with smoothing.

Theorem 7.1 (Rosenblatt (1956)) A uniform minimum variance unbiased
estimator for f(x) does not exist.

To be unbiased, we require:

E[f̂(x)] = f(x), ∀x.
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Figure 7.7: The difference (error) between a density and its estimator.

To have uniform minimum variance, we require:

Var
[
f̂(x)|f(x)

]
≤ Var [ĝ(x)|f(x)] , ∀x,

for all f(x), where ĝ(x) is any other estimator of f(x).
To illustrate this theorem, suppose we have a kernel estimator:

f̂(x) =
1

n

n∑
i=1

k(x− xi;w),

Its expectation is:

E[f̂(x)] =
1

n

n∑
i=1

∫
k(x− xi;w)f(xi)dxi

=

∫
k(x− y)f(y)dy. (7.7)

Unless k(x− y) = δ(x− y), f̂(x) will be biased for some f(x). But δ(x− y) has
infinite variance.

Thus, the nice properties we strive for in parameter estimation (and some-
times achieve) are beyond reach. The intuition behind this limitation may be
understood as the effect that smoothing lowers peaks and fills in valleys. We see
this effect at work in Fig. 7.8, where both a histogram and a Gaussian kernel
estimator smooth out some of the structure in the original sampling distribu-
tion. Figure 7.9 shows how the effect may be mitigated, though not eliminated,
with choice of binning or smoothing parameter.

The MSE for a density is a measure of uncertainty at a point. It is useful
to somehow summarize the uncertainty over all points in a single quantity. We
wish to establish a notion for the “distance” from function f̂(x) to function
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Figure 7.8: Red curve: PDF Histogram: Sampling from PDF Black curve:
Gaussian kernel estimator for PDF

f(x). This is a familiar subject, we are just dealing with normed vector spaces.
Choice of norm is a bit arbitrary; obvious extremes are:

‖f̂(x)− f(x)‖L∞ ≡ sup
x
|f̂(x)− f(x)| (7.8)

‖f̂(x)− f(x)‖L1
≡

∫
|f̂(x)− f(x)| dx. (7.9)

As is commonly done, we’ll use the L2 norm, or more precisely, the Integrated
Squared Error (ISE):

ISE ≡
∫ [

f̂(x)− f(x)
]2
dx. (7.10)

In fact, the ISE is still difficult object, as it depends on the true density,
the estimator, and the sampled data. We may remove this latter dependence
by evaluating the Mean Integrated Squared Error (MISE), or equivalently,
the “integrated mean square error” (IMSE):

MISE ≡ E [ISE] = E

[∫ [
f̂(x)− f(x)

]2
dx

]
(7.11)

=

∫
E

[(
f̂(x)− f(x)

)2]
dx =

∫
MSE

[
f̂(x)

]
dx ≡ IMSE.(7.12)

A desirable property of an estimator is that the error decreases as the number
of samples increases. This is a familiar notion from parametric statistics.
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Figure 7.9: Plot showing effect of histogram binning and choice of smoothing
parameter, for the same PDF as in Fig. 7.8.

Definition 7.1 A density estimator f̂(x) is consistent if:

MSE
[
f̂(x)

]
≡ E

[
f̂(x)− f(x)

]2
→ 0

as n→∞.

7.6.1 Choosing Histogram Binning

Considerations such as minimizing the MSE may be used to choose an “optimal”
bin width for a histogram. Noting that the bin contents of a histogram are
binomial-distributed, we could show (exercise) that, for the histogram density

estimator f̂(x) = h(x)/nw:

Var
[
f̂(x)

]
≤

f(x∗j )

nw∣∣∣Bias
[
f̂(x)

]∣∣∣ ≤ γjw, (7.13)

where:

• x ∈ bin j,

• x∗j is defined (and exists by mean value theorem) by:∫
bin j

p(x) dx = wp(x∗j ),

• γj is a positive constant (existing by assumption) such that

|f(x)− f(x∗j )| < γj |x− x∗j |, ∀x ∈ bin j,
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• equality is approached as the probability to be in bin j decreases (e.g.,
by decreasing bin size).

Thus, we have a bound on the MSE for a histogram:

MSE
[
f̂(x)

]
= E

[
f̂(x)− p(x)

]2
≤
f(x∗j )

nw
+ γ2jw

2.

Theorem 7.2 The MSE of the histogram estimator f̂(x) = h(x)/nw is con-
sistent if the bin width w → 0 as n→∞ such that nw →∞.

Note that the w → 0 requirement insures that the bias will approach zero,
according to our earlier discussion. The nw →∞ requirement ensures that the
variance asymptotically vanishes.

Theorem 7.3 The MSE(x) bound above is minimized when

w = w∗(x) =

[
p(x∗j )

2γ2jn

]1/3
.

This theorem suggests that the optimal bin size decreases as 1/n1/3. The
1/n dependence of the variance is our familiar result for Poisson statistics. The
optimal bin size depends on the value of the density in the bin. This suggests
an “adaptive binning” approach with variable bin sizes. However, according
to Scott [4]: “. . . in practice there are no reliable algorithms for constructing
adaptive histogram meshes.”

Alternatively, the MISE error is minimized (Gaussian kernel, asymptotically,
for normally distributed data) when

w∗ =

(
4

3

)1/5

σn−1/5.

An early and popular choice is Sturges’ rule, which says that the number
of bins should be

k = 1 + log2 n,

where n is the sample size. This is the rule that was used in making the his-
togram in Fig. 7.8. It is the default choice when making a histogram in R.

However, the argument behind this rule has been criticized [3]. Indeed we
see in our example that we probably would have “by hand” selected more bins;
our histogram is “over-smoothed”. There are other rules for optimizing the
number of bins. For example, Scott’s rule [4] for the bin width is:

w = 3.5sn−1/3,

where s is the sample standard deviation. Physicists typically ignore these
rules, and make explicit choices for the bin widths, often based on experimental
resolution. The standard rulesoften leave the visual impression that the binning
could usefully be finer, see Fig. 7.10.
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Figure 7.10: Illustration of histogram binning. The red curve is the sampling
PDF. The “standard rules” ( Sturges, Scott, Freedman-Diaconis) correspond
roughly to the coarser binning above. The shaded histogram seems like a better
choice.

7.7 The Curse of Dimensionality

While in principle problems with multiple dimensions in the sample space are not
essentially different from a single dimension, there are very important practical
differences. This is referred to as the curse of dimensionality. The most
obvious difficulty is in displaying and visualizing as the number of dimensions
increases. Typically one displays projections in lower dimensions, but this loses
the correlations that might be present in the un-displayed dimensions.

Another difficulty is that “all” the volume (of a bounded region) goes to the
boundary (exponentially!) as the dimensions increases. This is illustrated in
Fig. 7.11. A unit cube in d dimensions is illustrated as d increases. A central
cube with edges 1/2 unit in length is shown. The fraction of the volume con-
tained in this central cube decreases as 2−d. As a consequence, data becomes
“sparse”. To obtain a suitable density of statistics, for example in a simula-
tion tends to require exponentially growing computation as the dimensionality
increases.

7.8 The Bootstrap

A statistical technique known as the bootstrap provides a means to evaluate
how much to trust our density estimate. The bootstrap algorithm in this
context is as follows:

1. Form density estimate p̂ from data {xi; i = 1, . . . , n}.



198 CHAPTER 7. DENSITY ESTIMATION

1/2

1/4
1/8

, . . . 1
2d

Figure 7.11: Demonstration of the “curse of dimensionality”.

2. Resample (uniformly) n values from {xi; i = 1, . . . , n}, with replacement,
obtaining {x∗i ; i = 1, . . . , n} (bootstrap data). Note that in resampling
with replacement our bootstrap dataset may contain the same xi multiple
times.

3. Form density estimate p̂∗ from data {x∗i ; i = 1, . . . , n}.

4. Repeat steps 2&3 many (N) times to obtain a family of bootstrap density
estimates {p̂∗i ; i = 1, . . . , N}.

5. The distribution of p̂∗i about p̂ mimics the distribution of p̂ about p.

Consider, for a kernel density estimator, the expectation of the boostrap
dataset:

E [p̂∗(x)] = E [K(x− x∗i ;w)] = p̂(x),

where the demonstration is left as an exercise. Thus, the bootstrap distribution
about p̂ does not reproduce the bias which may be present in p̂ about p.
However, it does properly reproduce the variance of p̂, hence the bootstrap is a
useful tool for estimating the variance of our density estimator. An illustration
of the distribution of bootstrap samples is shown in Fig. 7.12.

7.9 Estimating Bias: The Jackknife

We have seen that we may use the bootstrap to evaluate the variance of a
density estimator, but not the bias. Both properties are needed for a complete
understanding of our estimator. A method that can be used to estimate bias
is the jackknife. The idea behind this method is that bias depends on sample
size. If we can assume that the bias vanishes asymptotically, we may use the
data to estimate the dependence of the bias on sample size.

The jackknife algorithm is as follows:

1. Divide the data into k random disjoint subsamples.

2. Evaluate estimator for each subsample.

3. Compare average of estimates on subsamples with estimator based on full
dataset.
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Figure 7.12: Use of the bootstrap to determine the spread of a Gaussian kernel
density estimator.

Figure 7.13 illustrates the jackknife technique. Besides estimating the bias,
jackknife techniques may also be used to reduce bias (see Scott [4]).

7.10 Cross-validation

Similar to the jackknife, but different in intent, is the cross-validation pro-
cedure. In density estimation, cross-validation is used to optimize smoothing
bandwidth selection. It can improve on “theoretical” optimizations by making
use of the actual sampling distribution, via the available samples.

The basic method (“leave-one-out cross-validation”) is as follows: Form n
subsets of the dataset, each one leaving out a different datum. Use subscript
−i to denote subset omitting datum xi. For density estimator f̂(x;w) evaluate
the following average over these subsets:

1

n

n∑
i=1

∫
f̂2−i(x) dx− 2

n

n∑
i=1

f̂−i(xi).

The reader is encouraged to show that the expectation of this quantity is the
MISE of f̂ for n−1 samples, except for a term which is independent of w. Thus,
we may evaluate the dependence of this quantity on smoothing parameter w,
and select the value w∗ for which it is minimized. Figure 7.14 illustrates the
procedure.
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Figure 7.13: Jackknife estimate of bias.

7.11 Adaptive Kernel Estimation

We saw in our discussion of histograms that it is probably more optimal to use
variable bin widths. This applies to other kernels as well. Indeed, the use of
a fixed smoothing parameter, deduced from all of the data introduces a non-
local, hence parametric, aspect into the estimation. It is more consistent to
look for smoothing which depends on data locally. This is adaptive kernel
estimation.

We argue that the more data there is in a region, the better that region can be
estimated. Thus, in regions of high density, we should use narrower smoothing.
In Poisson statistics (e.g., histogram binning), the relative uncertainty scales as

√
N

N
∝ 1√

p(x)
.

Thus, in the region containing xi, the smoothing parameter should be:

w(xi) = w∗/
√
p(xi).

There are two issues with implementing this:

• What is w∗?

• We don’t know p(x).

For p(x), we may try substituting our fixed kernel estimator, call it p̂0(x).
For w∗, we use dimensional analysis:

D [w(xi)] = D[x]; D [p(x)] = D[1/x] ⇒ D[w∗] = D
[√
x
]

= D
[√
σ
]
.
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Figure 7.14: Cross validation. Left: Determining the optimal w∗; Right: Ap-
plying the optimized smoothing.

Then, for example, using the “MISE-optimized” choice earlier, we iterate on our
fixed kernel estimator to obtain:

p̂1(x) =
1

n

n∑
i=1

1

wi
K

(
x− xi
wi

)
,

where

wi = w(xi) =

(
4

3

)1/5√
ρσ

p̂0(xi)
n−1/5.

ρ is a factor which may be further optimized, or typically set to one.
The iteration on the fixed-kernel estimator nearly removes the dependence

on our intitial choice of w. The boundaries pose some complication in carrying
this out.

There are packages for adaptive kernel estimation, for example, the KEYS
(“Kernel Estimating Your Shapes”) package [5]. Figure 7.15 illustrates the use
of this package.

7.12 Multivariate Kernel Estimation

Besides the curse of dimensionality, the multi-dimensional case introduces the
complication of covariance. When using a product kernel, the local estimator
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Figure 9 – Non-parametric p.d.f.s:  Left: histogram of unbinned input data, Middle: Histogram-
based p.d.f (2nd order interpolation), Right: KEYS p.d.f from original unbinned input data. 

Figure 7.15: Example of the KEYS adaptive kernel estimation [6]

has diagonal covariance matrix. In principle, we could apply a local linear
transformation of the data to a coordinate system with diagonal covariance
matrices. This amounts to a non-linear transfomation of the data in a global
sense, and may not be straightforward. However, we can at least work in the
system for which the overall covariance matrix of the data is diagonal.

If {yi} is the suitably diagonalized data, the product fixed kernel estimator
in d dimensions is:

p̂0(y) =
1

n

n∑
i=1

 d∏
j=1

1

wj
K

(
y(j) − y(j)i

wj

) ,
where y(j) denotes the j-th component of the vector y. The asymptotic, normal
MISE-optimized smoothing parameters are now:

wj =

(
4

d+ 2

)1/(d+4)

σjn
−1/(d+4).

The corresponding adaptive kernel estimator follows the discussion as for the
univariate case. An issue in the scaling for the adaptive bandwidth arises when
the multivariate data is approximately sampled from a lower dimensionality
than the dimension d.

Fig. 7.16 shows an example in which the sampling distribution has diagonal
covariance matrix (locally and globally). Applying kernel estimation to this dis-
tribution yields the results in Fig. 7.17, for two different smoothing parameters.

For comparison, Fig. 7.19 shows an example in which the sampling distribu-
tion has non-diagonal covariance matrix. Applying the same kernel estimation
to this distribution gives the results shown in Fig. 7.19. It may be observed
(since this is the same data as in Fig. 7.16, just rotated to give a non-diagonal
covariance matrix) that this is more difficult to handle.
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Figure 7.16: A two-dimensional distribution with diagonal covariance matrix.

7.13 Estimation Using Orthogonal Series

We may take an alternative approach, and imagine expanding the PDF in a
series of orthogonal functions:

p(x) =

∞∑
k=0

akψk(x),

where

ak =

∫
ψk(x)p(x)ρ(x) dx = E [ψk(x)ρ(x)] ,

and ∫
ψk(x)ψ`(x)ρ(x) dx = δk`,

where ρ(x) is a “weight function”.
Since the expansion coefficients are expectation values of functions, it is

natural to substitute sample averages as estimators for them:

âk =
1

n

n∑
i=1

ψk(xi)ρ(xi),

and thus:

p̂(x) =

m∑
k=1

âkψk(x),
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Figure 7.17: Kernel estimation applied to the two-dimensional data in Fig. 7.16.
Left: Default smoothing parameter; Right: Using one-half of the default
smoothing parameter.

where the number of terms m is chosen by some optimization criterion.

Note the analogy between choosing m and choosing smoothing parameter w
in kernel estimators; and between choosing K and choosing {ψk}. We are actu-
ally rather familiar with estimation using orthogonal series: It is the method of
moments, or substitution method, that we described in Chapter 3. An example
of an application of this method is shown in Fig. 7.20. In particular, the left
graph shows the estimated spectra broken up by orthogonal function, in this
case Y`m spherical harmonics.

7.14 Using Monte Carlo Models

We often build up a data model using Monte Carlo computations of different
processes, which are added together to get the complete model. This may involve
weighting of events, if more effective time is simulated for some processes than
for others. The overall simulated empirical density distribution is then:

f̂(x) =

n∑
i=1

ρiδ(x− xi),

where
∑
ρi = 1 (or n to correspond with an event sample of some total size).

The weights must be included in computing the sample covariance matrix
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Figure 7.18: A two-dimensional distribution with non-diagonal covariance ma-
trix.

(xi has components x
(k)
i , k = 1 . . . d):

Vk` =

n∑
i=1

ρi
(x

(k)
i − µ̂k)(x

(`)
i − µ̂`)∑

j ρj
,

where µ̂k =
∑

i ρix
(k)
i /

∑
j ρj is the sample mean in dimension k.

Assuming we have transformed to a diagonal system using this covariance
matrix, our product kernel density based on this simluation is then:

f̂0(x) =
1∑
j ρj

n∑
i=1

ρi

d∏
k=1

1

wk
K

(
x(k) − x(k)i

wk

)
.

This may be iterated to obtain an adaptive kernel estimator as discussed earlier.

7.15 Unfolding

We may not be satisfied with merely estimating the density from which our
sample {xi} was drawn. The interesting physics may be obscured by convolution
with uninteresting functions, for example efficiency dependencies or radiative
corrections. Thus, we wish to unfold the interesting distribution from the
sampling distribution. Our treatment of this big subject will be cursory. See,
for example, Ref. [8] for further discussion.
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Figure 7.19: Kernel estimation applied to the two-dimensional data in Fig. 7.18.
Left: Default smoothing parameter; Middle: Using one-half of the default
smoothing parameter; Right: Intermediate smoothing.

We will assume the convolution function relating the two distribtuions is
known. However, it often is also estimated via auxillary measurements. Be-
cause data fluctuates, unfolding usually also necessitates smoothing to control
fluctuations. This is referred to as Regularization in this context.

To set up a typical problem: Suppose we ample from a distribution with
some kernel function K(x, y):

o(x) =

∫
K(x, y)f(y)dy.

We are given a sampling ô, and wish to estimate f .
In principle, the solution is easy:

f̂(y) =

∫
K−1(y, x)ô(x)dx,

where ∫
K−1(x, y)K(y, x′) dy = δ(x− x′).

In practice, our observations are discrete, and we need to interpolate/smooth.
If we don’t know how (or are too lazy) to invert K, we may try an iterative

solution. For example, consider the problem of unfolding radiative corrections
in a cross section measurement. The observed cross section, σE(s) is related to
the “interesting” cross section σ according to:

σE(s) = σ(s) + δσ(s),

where

δσ(s) =

∫
K(s, s′)σ(s′) ds′.
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Figure 7.20: The Kπ mass spectrum from Ref. [7]. Left: The measured spec-
trum. The line histogram is the raw measurement data; the points show the
data corrected for acceptance. Left: The mass spectrum broken up by angular
distribution.
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We form an iterative estimate for σ(s) according to:

σ̂0(s) = σE(s) (7.14)

σ̂i(s) = σE(s)−
∫
K(s, s′)σ̂i−1(s′) ds′, i = 1, 2, . . . (7.15)

Notice that this is just the Neumann series solution to an integral equation.
Since σE(s) is measured at discrete s values and with some statistical preci-

sion, some smoothing/interpolation is still required.

7.15.1 Unfolding: Regularization

If we know K−1 we can incorporate the smoothing/interpolation more directly.
We could use the techniques already described to form a smoothed estimate ô,
and then use the transformation K−1 to obtain the estimator f̂ . For simplicity,
consider here the problem of unfolding a histogram. Then we restate the earlier
integral formula as:

oi =

k∑
j=1

Kijfj ,

where K is a square matrix, assumed invertible.
A popular procedure is to form a likelihood (or χ2), but add an extra term,

a “regulator”, to impose smoothing. The modified likelihood is maximized to
obtain the estimate for {fj}.

lnL → lnL′ = lnL+ wS(ôi).

The regulator function S(ôi) as usual gets its smoothing effect by being some-
what non-local. A popular choice is to add a “curvature” term to be minimized
(hence smoothed):

S(ôi) = −
k−1∑
j=2

[(ôi+1 − ôi)− (ôi − ôi−1)]
2
.

This is implemented, for example, in the RUN package [9].
Another implementation is GURU [10]. Further discussion may be found

in [11]. This paper has a nice demonstration of the importance of smoothing:
Note that the transformation K itself corresponds to a sort of smoother, as it
acts non-locally. The act of “unfolding” a smoother can produce large variances.

7.16 Non-parametric Regression

Regression is the problem of estimating the dependence of some “response”
variable on a “predictor” variable. Given a dataset of predictor-response pairs
{(xi, yi), i = 1, . . . , n}, we write the relationship as:

yi = r(xi) + εi,
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where the “error” εi might also depend on x through the parameters of the
sampling distribution it represents.

We are used to solving this problem with parametric statistics, for example,
the dependence of accelerator background on beam current, where we might try
a power-law form. However, we may also bring our non-parametric methods to
bear on this problem.

The sampling of the response-predictor pairs may be a fixed design in
which the xi values are deliberately selected, or a random design, in which
(xi, yi) is drawn from some joint PDF. We’ll work in the context of the random
design here, and also will work in two dimensions.

The regression function r may be expressed as:

r(x) = E [y|x] =

∫
yp(y|x) dy =

∫
yf(x, y) dy∫
f(x, y)dy

.

Let us construct an estimator for r by substituting a bivariate product kernel
estimator for the unknown PDF f(x, y):

f̂(x, y) =
1

nwxwy

n∑
i=1

K

(
x− xi
wx

)
K

(
y − yi
wy

)
.

Assuming a symmetric kernel, after a little algebra we find:

r̂(x) =

n∑
i=1

yiK

(
x− xi
wx

)
/

n∑
i=1

K

(
x− xi
wx

)
.

This is known as the local mean estimator. Note the absence of dependence
on wy, and the linearity in the yi.

We may achieve better properties by considering local polynomial estima-
tors, corresponding to local polynomial fits to the data. This may be achieved
with a least-squares minimization (the local mean is the result for a fit to a
zero-order polynomial). Thus, the local linear regression estimate is given by:

r̂(x) =

n∑
i=1

[S2(x)− S1(x)(xi − x)]K ((xi − x)/wx) yi
S2(x)S0(x)− S1(x)2

,

where

S`(x) ≡
n∑

i=1

(xi − x)`K

(
x− xi
wx

)
.

R provides a package loess for local polynomialregression fitting. Examples
of its use are shown in Figs; 7.21 and 7.22.

7.17 sPlots

The use of the density estimation technique known as sPlots [12] has gained
popularity in some physics applications. This is a multivariate technique that
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Figure 7.21: Illustration of local linear regression using the loess package. The
dataset is the same in both plots, but the variables have been transformed by a
45 degree rotation in the second plot. It may be observed that the introduction
of covariance influences the result.

uses the distribution on a subset of variables to predict the distribution in
another subset. It is based on a (parametric) model in the predictor variables,
with different categories (e.g., “signal” and “background”). It provides both a
means to visualize agreement with the model for each category and an easy way
to do “background subtraction”.

Assume there are a total of r + p parameters in the overall fit to the data:
(i) The expected number of events, Nj , j = 1, . . . , r in each category, and (ii)
Distribution parameters, {θi, i = 1, . . . , p}. We use a total of N events to
estimate these parameters via a maximum likelihood fit to the sample {x}.

We wish to find weights wj(x
′
i), depending only on {x′} ⊆ {x} (and implicitly

on the unknown parameters), such that the asymptotic distribution in y /∈ {x′}
of the weighted events is the sampling distribution in y, for any chosen category
j. Assume that y and {x′} are statistically independent within each category.

The weights that satisfy our criterion and produce minimum variance summed
over the histogram are given by [12]:

wj(e) =

∑r
k=1 Vjkfk(x′e)∑r
k=1 N̂kfk(x′e)

,

where wj(e) is the weight for event e in category j V is the covariance matrix
from a “reduced fit” (i.e., excluding y):

(
V −1

)
jk
≡

N∑
e=1

fj(x
′
e)fk(x′e)[∑r

i=1 N̂ifi(x′e)
]2 ,
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Figure 7.22: Illustration of local linear regression using the loess package. Left:
Applied to a dataset of cumulative publications from an experiment by year.
The green lines just connect the dots. The other curves show the results for
variations on the regression. Right: Various regressions applied to a dataset of
tree heights vs diameter (from R).

N̂k is the estimate of the number of events in category k, according to the
reduced fit. fj(x

′
e) is the PDF for category j evaluated at x′e.

Finally, the sPlot is constructed by adding each event e with y = ye to
the y-histogram (or scatter plot, etc, if y is multivariate), with weight wj(e).
The resulting histogram is then an estimator for the true distribution in yfor
category j. Figures 7.23 and 7.24 provide illustrations of the use of sPlots.

Typically the sPlot error in a bin is estimated simply according to the sum
of the squares of the weights. This sometimes leads to visually misleading
impressions, due to fluctuations on small statistics. If the plot is being made
for a distribution for which there is a prediction, then that distribution can be
used to estimate the expected uncertainties, and these can be plotted. If the
plot is being made for a distribution for which there is no prediction, it is more
difficult, but a (smoothed) estimate from the empirical distribution may be used
to estimate the expected errors.
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Figure 1. Signal distribution of the ΔE variable. The left
figure is obtained applying a cut on the Likelihood ratio to
enrich the data sample in signal events (about 60% of signal
is kept). The right figure shows the sPlot for signal (all events
are kept).

Figure 7.23: Illustration of the sPlot technique. Left: A non-sPlot, which uses a
subset of the data in an attempt to display signal behavior. Right: An sPlot for
the signal category. The curve is the expected signal behavior. Note the excess
of events at low values of ∆E. This turned out to be an unexpected portion
of the signal distribution, which was found using the sPlot. From: M. Pivk,
“sPlot: A Quick Introduction”, arXiv:physics/0602023 (2006).
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Figure 7.24: The sPlot technique used for background subtraction in mass spec-
tra. Left: The spectra before background subtraction. Right: The spectra after
background subtraction using sPlots. From hep-ex/0507031.
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