
Confidence Intervals and Nuisance Parameters

Common Example
Interval Estimation in Poisson Sampling

with Scale Factor and Background Subtraction

The Problem (eg): A “Cut and Count” analysis for a branching fraction
B finds n events.

– The background estimate is b̂ ± σb events.

– The efficiency and parent sample are estimated to give a scaling factor
f̂ ± σf .

How do we determine a (frequency) Confidence Interval?

– Assume n is sampled from Poisson, µ = 〈n〉 = fB + b.

– Assume b̂ is sampled from normal N(b, σb).

– Assume f̂ is sampled from normal N(f, σf ).

1 Frank Porter, March 22, 2005, CITBaBar



Example, continued

The likelihood function is:

L(n, b̂, f̂ ;B, b, f) = µne−µ

n!
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µ = 〈n〉 = fB + b

We are interested in the branching fraction B. In particular, would like

to summarize data relevant to B, for example, in the form of a confidence

interval, without dependence on the uninteresting quantities b and f .

b and f are “nuisance parameters”.
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Interval Estimation in Poisson Sampling (continued)
Variety of Approaches – Dealing With the Nuisance Parameters

Just give n, b̂ ± σb, and f̂ ± σf .

– Provides “complete” summary.

– Should be done anyway.

– But it isn’t a confidence interval. . .

Integrate over N(f̂ , σf) “PDF” for f , N(b̂, σb) “PDF” for b. (variant:
normal assumption in 1/f).

– Quasi-Bayesian (uniform prior for f , b (or, eg, for 1/f)).

Ad hoc: eg, Upper limit – Poisson statistics for n, but with scale,
background shifted by uncertainty.

– Easy

– makeshift; extension to two-sided intervals?

Fix f and b at maximum likelihood estimates; include uncertainty in
systematics.

Approximate evaluation with change in likelihood as in “MINOS”.
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The “MINOS” Method
1. Write down the likelihood function in

all parameters.

2. Find the global maximum.

3. Search in B parameter for where − lnL

increases from minimum by specified
amount (e.g., ∆ = 1/2), re-optimizing
with respect to f and b.

Does it work? Investigate the frequency
behavior of this algorithm.

– For large statistics (normal distribu-
tion), we know that for ∆ = 1/2 this
produces a 68% confidence interval on
B.

– How far can we trust it into the small
statistics regime?

Method also applicable to unbinned anal-

ysis.
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Study of coverage (continued)
Dependence on b and σb

B = 0, f = 1, σf = 0, ∆ = 1/2
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Changing ∆
B = 0, f = 1, σb = 0, ∆ = 0.8
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Dependence on f and σf for B = 1
B = 1, b = 2, σb = 0, ∆ = 1/2
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– Uncertainty in background and scale
helps.

– Can increase ∆ if want to put a floor
on coverage.
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What the intervals look like

200 experiments

∆ = 1/2, B = 0, f = 1.0, σf = 0.1, b = 3.0, σb = 0.1.

-6

-4

-2

0

2

4

6

8

10

12

-4 -2 0 2 4 6 8

B(L_max)

B
(u

p
p

er
,lo

w
er

)

Low side
High side

6 Frank Porter, March 22, 2005, CITBaBar



Summary: Confidence Intervals with Low Statistics

Always give n, b̂ ± σb, and f̂ ± σf .

Justify chosen approach with computation of frequency.

Likelihood method considered here works pretty well (Well enough?)
even for rather low expected counts, for 68% confidence intervals.
Uncertainty in b, f improves coverage.

If σb ≈ b or σf ≈ f , enter a regime not studied here. Normal assump-
tion probably invalid.

Could choose larger ∆(− lnL) if want to insure at least 68%, or push
to very low statistics.

Good enough for 68% confidence interval doesn’t mean good enough
for significance test. If statistics is such that Gaussian intuition is
misleading, should ensure this is understood.
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What is in the statistics books? (without all the rigor. . . )

Pivotal Quantity: Consider a sample X = (X1,X2, . . . ,Xn) from popu-

lation P , governed by parameters θ. A function R(X, θ) is called pivotal

iff the distribution of R does not depend on θ.

Generalization of the feature of a “Location parameter”: If θ is a

location parameter for X, then the distribution of X − θ is independent

of θ.
P(x)

x 0 x-

P(x)

µ µ
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Confidence Intervals from Pivotal Quantities

Let R(X, θ) be a pivotal quantity, and α be a desired confidence level.

Find (constants!) c1, c2 such that:

P [c1 ≤ R(X, θ) ≤ c2] ≥ α.

[We’ll use “= α” henceforth, presuming a continuous distribution.]

Now define:

C(X) ≡ {θ : c1 ≤ R(X, θ) ≤ c2}.

C(X) is a confidence region with α confidence level, since

P [θ ∈ C(X)] = P [c1 ≤ R(X, θ) ≤ c2] = α.
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Pivotal Quantities: Example

Consider sampling (i.i.d.) X = X1, . . . , Xn from pdf of form (eg, Gaus-

sian):

p(x) = 1
σ
f

(
x − µ

σ

)
.

Case I: σ known. Then Xi−µ, for any i, is pivotal. Also, the quantity

X̄ − µ is pivotal, where X̄ is the sample mean, X̄ ≡ 1
n

∑n
i=1 Xi. As

a sufficient statistic, X̄ is a better choice for forming a confidence set

for µ.

Case II: Both µ and σ unknown. Let s2 be the sample variance:

s2 ≡ 1
n

n∑

i=1
(Xi − X̄)2.

– s/σ is a pivotal quantity, and can be used to derive a confidence

set (interval) for σ (since µ does not appear).

10 Frank Porter, March 22, 2005, CITBaBar



Case II, continued

– Another pivotal quantity is:

t(X) ≡ X̄ − µ

(s/√n)
.

This permits confidence intervals for µ:

{µ : c1 ≤ t(X) ≤ c2} = (X̄ − c2s/
√

n, X̄ − c1s/
√

n)

at the α confidence level, where

P(c1 ≤ t(X) ≤ c2) = α.

Remark: t(X) is often called a “Studentized† statistic” (though it

isn’t a statistic, since it depends also on unknown µ). In the case

of a normal sampling, the distribution of t is Student’s tn−1.

†Student was a pseudonym for William Gosset.
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Confidence Intervals from Inverting Test Acceptance Regions

For any test T (of hypothesis H0 versus H1) we define statistic (“de-

cision rule”) T(X) with values 0 or 1 (for a “non-randomized test”).

T(X) = 0 corresponds to acceptance of H0, and T(X) = 1 to rejec-

tion.

The set A = {x : T(x) 6= 1} is called the “acceptance region”. We

call 1 − α the “significance level” of the test if

1 − α = P [T(X) = 1] , H0 is true.

That is, the significance level is the probability of rejecting H0 when

H0 is true (“Type I error”).
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Confidence Intervals from Inverting Test Acceptance Regions

Let Tθ0 be a test for H0 : θ = θ0 with significance level 1 − α and

acceptance region A(θ0). Let, for each x,

C(x) = {θ : x ∈ A(θ)}.

Now, if θ = θ0,

P (X /∈ A(θ0)) = P(Tθ0 = 1) = 1 − α.

That is, again for θ = θ0,

α = P [X ∈ A(θ0)] = P [θ0 ∈ C(X)] .

This holds for all θ0, hence, for any θ0 = θ,

P [θ ∈ C(X)] = α.

That is, C(X) is a confidence region for θ, at the α confidence level.
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Confidence Intervals from Inverting Test Acceptance Regions

We often use ordering on the likelihood ratio to determine our accep-

tance region. Hence, the likelihood ordering may be used to construct

confidence sets.

That is, we define the “Likelihood Ratio”:

λ(θ;x) ≡
L(θ;x)

maxθ′ L(θ′;x)
.

For any θ = θ0, we build acceptance region according to:

A(θ0) =
{
x : Tθ0(x) 6= 1

}
,

where

Tθ0(x) =
{

0 λ(x; θ0) > λα(θ0)
1 λ(x; θ0) < λα(θ0),

and λα(θ0) is determined by requiring, for θ = θ0,

P [λ(X; θ0) > λα(θ0)] = α.
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What about nuisance parameters?

Suppose we are interested in some parameters µ ⊂ θ, where dim(µ) <

dim(θ). Let η ⊂ θ stand for the remaining “nuisance” parameters.

If you can find pivotal parameters (e.g., normal distribution), great!

But not always possible.

Test acceptance region approach also problematic: H0 becomes “com-

posite”†, since nuisance parameters are unspecified. In general, we

don’t know how to construct the acceptance region with specified sig-

nificance level for

H0 : µ = µ0; η unspecified.

† A “simple hypothesis” is one in which the population is completely

specified.
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Asymptotic Inference

When can’t (or won’t) do exact solution, can base approximate treat-

ment on asymptotic crieria.

Let X = (X1, ...,Xn) be a sample from population P ∈ P. Let θ be

a parameter vector for P , and let C(X) be a confidence set for θ. If

lim infn P [θ ∈ C(X)] ≥ α for any P ∈ P, then α is called an “Asymp-

totic Significance Level” of C(X).

If limn→∞ P [θ ∈ C(X)] = α for any P ∈ P, then C(X) is an “α

Asymptotically Correct” confidence set.

Many possible approaches, for example, can look for “Asymptoti-

cally Pivotal” quantities; or invert acceptance regions of “Asymptotic

Tests”.
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Profile Likelihood

Consider likelihood L(µ, η), based on observation X = x. Let

LP (µ) = sup
η

L(µ, η).

LP (µ) = L (µ, η(µ)) is called the “Profile Likelihood” for µ.

The “MINOS” method of error estimation makes use of the profile

likelihood.

Let dim(µ) = r. Consider the likelihood ratio test for H0 : µ = µ0

with

λ(µ0) = LP (µ0)
maxθ′ L(θ′)

,

where θ = {µ, η}. The set

C(X) =
{
µ : −2 lnλ(µ) ≥ cα

}
,

where cα is the χ2 corresponding to the α probablity point of a χ2 with

r degrees of freedom, is an α asymptotically correct confidence set.
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Conditional Likelihood

Consider likelihood L(µ, η). Suppose Tη(X) is a sufficient statistic for

η for any given µ. Then conditional distribution f(X|Tη) does not de-

pend on η. The likelihood function corresponding to this conditional

distribution is called the “Conditional Likelihood”.

Note that estimates (e.g., MLE for µ) based on conditional likelihood

may be different than for those based on full likelihood.

This eliminates the nuisance parameter problem, if it can be done

without too high a price.
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More someday. . .

Bootstrap?
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