Confidence Intervals and Nuisance Parameters

Common Example
Interval Estimation in Poisson Sampling

with Scale Factor and Background Subtraction

The Problem (eg): A “Cut and Count” analysis for a branching fraction
B finds n events.

— The background estimate is b + oy, events.

— The efficiency and parent sample are estimated to give a scaling factor
fEoy.

How do we determine a (frequency) Confidence Interval?

— Assume n is sampled from Poisson, ;1 = (n) = fB + b.

— Assume b is sampled from normal N (b, 0p).

— Assume [ is sampled from normal N (f,o8)
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Example, continued

The likelihood function is:

We are interested in the branching fraction B. In particular, would like
to summarize data relevant to B, for example, in the form of a confidence

interval, without dependence on the uninteresting quantities b and f.

b and f are “nuisance parameters”.
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Interval Estimation in Poisson Sampling (continued)

Variety of Approaches — Dealing With the Nuisance Parameters
Just give n, b+ oy, and ]A":I: of.
— Should be done anyway.
— But it isn’t a confidence interval. ..
Integrate over N(]A",af) “PDF” for f, N(b,o;) “PDF” for b.

— Quasi-Bayesian (uniform prior for f, b (or, eg, for 1/f)).

Ad hoc: eg, Upper limit — Poisson statistics for n, but with scale,
background shifted by uncertainty.

— makeshift; extension to two-sided intervals?

Fix f and b at maximum likelihood estimates; include uncertainty in
systematics.

Approximate evaluation with change in likelihood as in “MINOS”.
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The “MINOS” Method
f=1.0,0;,=0.1,b=050,=0.1

1.

1. Write down the likelihood function in

all parameters. 09l S

2. Find the global maximum. ggf /é;/g :g:?

3. Search in B parameter for where —InL  § 2§ 7 B=2
increases from minimum by specified %0.4 /] ::zi
amount (e.g., A = 1/2), re-optimizing § 22( — Normal
with respect to f and b. 0.1]

Does it work? Investigate the frequency o 2 Deltag-int) 4 5

behavior of this algorithm. B=0,f=10;=0,0,=0

— For large statistics (normal distribu- 12,
tion), we know that for A = 1/2 this :
produces a 68% confidence interval on &4/ m@g[@rﬁﬁ
2 - —b=1
B‘ 50.6 i —b=2
— How far can we trust it into the small &, b=3
. : g —b=4
statistics regime? Sos p-s
— Normal

Method also applicable to unbinned anal-

o
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Study of coverage (continued)

Dependence on b and oy Dependence on f and o for B =1
B:O,le,af:O,Azl/Z le,b:2,ab:O,A:1/2
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What the intervals look like
200 experiments
A=1/2, B=0, f= 1.0,0/=0.1,6=3.0,0, = 0.1.
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Summary: Confidence Intervals with Low Statistics

Always give n, b+ oy, and j"i of.
Justify chosen approach with computation of frequency.

Likelihood method considered here works pretty well (Well enough?)
even for rather low expected counts, for 68% confidence intervals.
Uncertainty in b, f improves coverage.

If oy ®boroy= f,enter a regime not studied here. Normal assump-
tion probably invalid.

Could choose larger A(—In L) if want to insure at least 68%, or push
to very low statistics.

Good enough for 68% confidence interval doesn’t mean good enough
for significance test. If statistics is such that Gaussian intuition is
misleading, should ensure this is understood.
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What is in the statistics books? (without all the rigor...)

Pivotal Quantity: Consider a sample X = (Xl, Xo, ... ,Xn) from popu-
lation P, governed by parameters 6. A function R(X : 9) is called pivotal
iff the distribution of R does not depend on 6.

Generalization of the feature of a “Location parameter”: If 6 is a

location parameter for X, then the distribution of X — # is independent

of 6.
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Confidence Intervals from Pivotal Quantities
Let R(X : 9) be a pivotal quantity, and « be a desired confidence level.

Find (constants!) ¢, c9 such that:

P [cl < R(X,H) < CQ] > Q.

[We’ll use “= a” henceforth, presuming a continuous distribution.]

Now define;

C(X)={0:c1 <R(X,0) < co}.

C(X ) is a confidence region with a confidence level, since

Pl € C(X)] = Pley < R(X,0) < 3] = .
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Pivotal Quantities: Example

Consider sampling (i.i.d.) X = Xq,..., X, from pdf of form (eg, Gaus-

p(z) = %f (gj _M> -

sian):

o
] CaseI: 0 known. Then X; — pu, for any 1, is pivotal. Also, the quantity

X — p is pivotal, where X is the sample mean, X = %Z?:l X;. As

a sufficient statistic, X is a better choice for forming a confidence set

for p.
] Case II: Both p and o unknown. Let s% be the sample variance:
1 — -
e - > (X - X)*
1=1

— s/o is a pivotal quantity, and can be used to derive a confidence

set (interval) for o (since p does not appear).
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Case II, continued

— Another pivotal quantity is:

t(X) = (SX/—\/_:;)

This permits confidence intervals for pu:
{pnieg <t(X) <co} = (X —cas/vn, X — c15//n)
at the o confidence level, where
P(q < t(X) < 02) = Q.

Remark: t(X ) is often called a “Studentized! statistic” (though it
isn’t a statistic, since it depends also on unknown ). In the case

of a normal sampling, the distribution of ¢ is Student’s t,,_1.

fStudent was a pseudonym for William Gosset.
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Confidence Intervals from Inverting Test Acceptance Regions

[_] For any test T (of hypothesis Hy versus H{) we define statistic (“de-

cision rule”) T(X) with values O or 1 (for a “non-randomized test”).

1 T(X) =0 corresponds to acceptance of Hy, and T(X) = 1 to rejec-

tion.

] The set A = {x: T(a:) # 1} is called the “acceptance region”. We

call 1 — o the “significance level” of the test if
l-a=P[T(X)=1], Hyis true.

That is, the significance level is the probability of rejecting Hy when
Hy is true (“Type I error”).
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Confidence Intervals from Inverting Test Acceptance Regions

Let Ty, be a test for Hy : 0 = 0y with significance level 1 — a and

acceptance region A(f). Let, for each z,
C(z) =1{0:x€ A(9)}.

Now, if 8 = 6,

P(X ¢A6)) =PIy, =1)=1-a.
That is, again for § = 6,

a=P[X € A(6y)] = P[0y € C(X)].
This holds for all 6, hence, for any 6y = 6,

PloeC(X)]=a

That is, C (X ) is a confidence region for 6, at the a confidence level.
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Confidence Intervals from Inverting Test Acceptance Regions

We often use ordering on the likelihood ratio to determine our accep-
tance region. Hence, the likelihood ordering may be used to construct

confidence sets.
That is, we define the “Likelihood Ratio”:

)\(9.1,) _ L(935E’)
"7 maxy L(0;2)

For any 68 = 6, we build acceptance region according to:

A(6p) = {z : Ty, (a) # 1},

where ( ) ( )
0O A x;0p) > A
o) = {3 Nek ) < vl
and )\a(ﬁo) is determined by requiring, for 6 = 6,

P [)\(X; 90) > )\a(eo)] = «
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What about nuisance parameters?

] Suppose we are interested in some parameters u C 6, where dim(u) <

dim(@). Let n C 6 stand for the remaining “nuisance” parameters.

] If you can find pivotal parameters ( ), great!

But not always possible.

] Test acceptance region approach also problematic: H( becomes “com-
posite”Jf, since nuisance parameters are unspecified. In general, we
don’t know how to construct the acceptance region with specified sig-

nificance level for

Hy : = po;n unspecified.

fA “simple hypothesis” is one in which the population is completely

specified.
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Asymptotic Inference

(] When can’t (or won’t) do exact solution, can base approximate treat-

ment on asymptotic crieria.

Let X = (Xl, ...7Xn) be a sample from population P € P. Let 6 be
a parameter vector for P, and let C (X ) be a confidence set for 6. If
limint, P |0 € C (X )] > « for any P € P, then « is called an “Asymp-
totic Significance Level” of (X )

If limn_>ooP[9 — C(X)] — « for any P € P, then C(X) is an “«

Asymptotically Correct” confidence set.

] Many possible approaches, for example, can look for “Asymptoti-
cally Pivotal” quantities; or invert acceptance regions of “Asymptotic

Tests”.
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Profile Likelihood

Consider likelihood L(u, 77), based on observation X = x. Let

Lp(p) = Sup Ly, m).

Lp(,u) =L (u, n(u)) is called the “Profile Likelihood” for pu.
The “MINOS” method of error estimation makes use of the profile
likelihood.

Let dim(u) — r. Consider the likelihood ratio test for Hy : u = py

with
Lp(po)
max L(H’ ) ’

Ako) =
where 6 = {u,n}. The set
C(X)={u:-2InA(u) >ca},

where ¢, is the X2 corresponding to the a probablity point of a X2 with

r degrees of freedom, is an o asymptotically correct confidence set.
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Conditional Likelihood

Consider likelihood L(,u, 77). Suppose Tn(X ) is a sufficient statistic for
n for any given p. Then conditional distribution f (X |T77) does not de-
pend on n. The likelihood function corresponding to this conditional

distribution is called the “Conditional Likelihood”.

[_] Note that estimates (e.g., MLE for u) based on conditional likelihood
may be different than for those based on full likelihood.

] This eliminates the nuisance parameter problem, if it can be done

without too high a price.
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More someday. . .

Bootstrap?
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