Abstract

This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

March 31, 2010
Contents

1 Introduction 1
 1.1 The Physics Motivation 1
 1.2 The SuperB Project Elements 1
 1.3 The Detector Design Progress Report 2

2 Overview 2
 2.1 Physics Performance 3
 2.2 Challenges on Detector Design 6
 2.3 Open Issues 7
 2.4 Detector R&D 8

3 Silicon Vertex Tracker 10
 3.1 Detector concept 10
 3.1.1 SVT and Layer0 10
 3.1.2 Performance Studies 10
 3.1.3 Background Conditions 12
 3.2 Layer0 options under study 13
 3.2.1 Striplets 13
 3.2.2 Hybrid Pixels 14
 3.2.3 MAPS 14
 3.2.4 Pixel Module Integration 15
 3.3 A MAPS-based all-pixel SVT using a deep P-well process 16
 3.4 R&D Activities 17

4 Drift Chamber 20
 4.1 Backgrounds 20
 4.2 Drift Chamber Geometry 21
 4.3 Mechanical Structure 21
 4.4 Gas Mixture 22
 4.5 Cell Design and Layout 22
 4.6 R&D work 23

5 Particle Identification 24
 5.1 Detector concept 24
 5.1.1 Charged particle identification at SuperB 25
 5.2 Barrel PID at SuperB 25
 5.2.1 Performance optimization 25
 5.3 Forward PID at SuperB 27
 5.3.1 Motivation for a forward PID detector 30
 5.3.2 Forward PID requirements 30
 5.3.3 Status of the forward PID R&D effort 30

6 Electromagnetic Calorimeter 33
 6.1 Barrel Calorimeter 33
6.2 Forward Endcap Calorimeter .. 34
6.2.1 Mechanical Structure .. 35
6.2.2 Readout System ... 35
6.2.3 Calibration and Beam Test ... 36
6.2.4 Performance Studies .. 36
6.3 Backward Endcap Calorimeter ... 36
6.4 R&D ... 39
6.4.1 Barrel Calorimeter ... 39
6.4.2 Forward Calorimeter ... 39
6.4.3 Backward Calorimeter ... 40

7 Instrumented Flux Return ... 41
7.1 Performance optimization ... 41
7.1.1 Identification Technique ... 41
7.1.2 Baseline Design Requirements 41
7.1.3 Design optimization and performance studies 42
7.2 R&D ... 43
7.2.1 R&D tests and results ... 43
7.2.2 Prototype ... 44
7.3 Baseline Detector Design ... 44
7.3.1 Flux Return ... 45

8 Electronics, Trigger, DAQ and Online 46
8.1 Overview of the Architecture ... 46
8.1.1 Trigger Strategy ... 46
8.1.2 Trigger Rates and Event Size Estimation 48
8.1.3 Dead Time and Buffer Queue Depth Considerations 48
8.2 Electronics, Trigger and DAQ .. 48
8.2.1 Fast Control and Timing System 48
8.2.2 Clock, Control and Data Links 50
8.2.3 Common Front-End Electronics 51
8.2.4 Readout Module .. 52
8.2.5 Experiment Control System .. 52
8.2.6 Level 1 Hardware Trigger .. 53
8.3 Online System .. 54
8.3.1 ROM Readout and Event Building 55
8.3.2 High Level Trigger Farm .. 55
8.3.3 Data Logging .. 55
8.3.4 Event Data Quality Monitoring and Display 55
8.3.5 Run Control System .. 56
8.3.6 Detector Control System .. 56
8.3.7 Other Components .. 56
8.3.8 Software Infrastructure .. 56
8.4 Front-End Electronics .. 57
8.4.1 SVT Electronics ... 57
8.4.2 DCH Electronics ... 57
8.4.3 PID Electronics ... 58
8.4.4 EMC Electronics .. 59
8.4.5 IFR Electronics: ... 61
8.5 R&D ... 62
8.6 Conclusions ... 63

9 Software and Computing ... 64
9.1 The SuperB baseline model ... 64
9.1.1 The requirements .. 65
9.1.2 SuperB offline computing development 65
9.2 Computing tools and services for the Detector and Physics TDR studies ... 66
9.2.1 Fast simulation of the SuperB detector 66
9.2.2 Bruno: the SuperB full simulation tool 69
9.2.3 The distributed production environment 71
9.2.4 The software development and collaborative tools 74
9.2.5 Code packaging and distribution 75

10 Mechanical Integration ... 77
10.1 Introduction .. 77
10.1.1 Magnet and Instrumented Flux Return 77
10.2 Component Extraction ... 78
10.3 Component Transport ... 79
10.4 Detector Assembly ... 80
10.5 Component Transport ... 80
10.6 Detector Assembly ... 81

11 Budget and Schedule .. 81
11.1 Detector Costs ... 82
11.2 Basis of Estimate .. 87
11.3 Schedule ... 88
1.2 The SuperB Project Elements

1 Introduction

1.1 The Physics Motivation

The Standard Model successfully explains the wide variety of experimental data that has been gathered over several decades with energies ranging from under a GeV to several hundred GeV. At the start of the millennium, the flavor sector was perhaps less explored than the gauge sector, but the PEP-II and KEK-B asymmetric B Factories, and their associated experiments BfB and Belle, have produced a wealth of important flavor physics highlights during the past decade [1]. The most notable experimental objective, the establishment of the Cabibbo-Kobayashi-Maskawa phase as consistent with experimentally observed CKM quark

2

1.2 The SuperB Project Elements

It is generally agreed that the physics being addressed by the next generation B factory requires a data sample that is some 50-100 times larger than the existing combined sample from BfB, Belle, and possibly at least 400 papers in refereed journals to date. Measurements of all three angles of the Unitarity Triangle - α and γ, in addition to $\sin 2\beta$; the establishment of $D^{\pm}D^{\mp}$ mixing; the uncovering of intriguing $B\rightarrow K\ell\nu$ for potential New Physics in B in $K^0L^\nu\ell\nu$ and $K^0L^\nu\ell\nu$ decays; and unveiling an entirely unexpected, new spectroscopy, are some examples of important experimental results beyond those initially contemplated.

With the LHC now beginning operations, the major experimental discoveries of the next few years will probably be at the energy frontier, where we would hope not only to complete the Standard Model by observing the Higgs particle, but to find signals of New Physics which are widely expected to lie around the 1 TeV energy scale. If found, the New Physics phenomena will need data from very sensitive heavy flavor experiments if they are to be understood in detail. Determining the flavor structure of the New Physics involves examining the information on rare $B\rightarrow K\ell\nu$ decays, and on CP violation in $b\rightarrow c$ quark decays that only a very high-luminosity asymmetric B Factory can provide [2]. On the other hand, if such signatures of New Physics are not observed at the LHC, then the excellent sensitivity provided at the luminosity frontier by SuperB provides another avenue to observing New Physics at mass scales up to 3 TeV or more through observation of rare processes involving $b\rightarrow c$ and 10^{35} events and studies of LFV in τ decays.

SuperB Detector Progress Report
Overview

fundamental discovery-level science at the luminosity frontier.

There is also an active international protocollaboration working effectively on the design of the detector. The detector team draws heavily on its deep experience with the BABAR detector, which has performed in an outstanding manner both in terms of scientific productivity and operational efficiency. BABAR serves as the foundation of the design of the SuperB detector.

To date, the SuperB project has been very favorably reviewed by several international committees. This international community now awaits a decision by the Italian government on its support of the project.

1.3 The Detector Design Progress Report

This document describes the design and development of the SuperB detector, which is based on a major upgrade of BABAR. This is one of several descriptive “Design Progress Reports (DPR)” being produced by the SuperB project during the first part of 2010 to motivate and summarize the development, and present status of each major division of the project (Physics, Accelerator, Detector, and Computing) so as to present a snapshot of the entire project at an intermediate stage between the CDR, which was written in 2007, and the TDR that is being developed during the next year.

The current BABAR detector consists of a tracking system with a 5 layer double-sided silicon strip vertex tracker (SVT) and a 40 layer drift chamber (DCH) inside a 1.5T magnetic field.
2.1 Physics Performance

field, a Cherenkov detector with fused silica bar radiators (DIRC), an electromagnetic calorimeter (EMC) consisting of 6280 CsI(Tl) crystals and an instrumented flux-return (IFR) comprised of both limited streamer tube (LST) and resistive plate chamber (RPC) detectors for $\mu^+\mu^-$ detection and π^0 identification.

The SuperB detector concept reuses a number of components from Babar: the flux-return steel, the superconducting coil, the barrel of the EMC and the fused silica bars of the DIRC. The flux-return will be augmented with additional absorber to increase the number of interactions lengths for muons to roughly 7\lambda. The DIRC camera will be replaced by multi-channel plate (MCP) photon detectors in focusing configuration with fused silica optics to reduce the impact of beam related backgrounds and improve performance. The forward EMC will feature cerium-doped LSO (lutetium orthosilicate) or LYSO (lutetium yttrium orthosilicate) crystals, hereafter referred to as LYSO crystals, which have a much shorter scintillation time constant, a lower Molière radius and better radiation hardness than the current CsI(Tl) crystals, again for reduced sensitivity to beam backgrounds and better position resolution.

The tracking detectors for SuperB will be new. The current SVT cannot operate at $L^{-10^{28}}$, and the DCH has reached the end of its design lifetime and must be replaced. To maintain sufficient Δr resolution for time-dependent CP violation measurements with the SuperB boost of $\beta = 0.24$, the vertex resolution will be improved by reducing the radius of the beam pipe, placing the inner-most layer of the SVT at a radius of roughly 1.2 cm. This innermost layer of the SVT will be constructed of either silicon striplets or Monolithic Active Pixel Sensors (MAPS) or other pixelated sensors, depending on the estimated occupancy from beam-related backgrounds. Likewise the design of the cell size and geometry of the DCH will be driven by occupancy considerations. The hermeticity of the SuperB detector, and thus its performance for certain physics channels will be improved by including a backwards "veto-quality" EMC detector comprising a lead-scintillator stack. The physics benefit from the inclusion of a forward PID remains under study. The baseline detector concept is a fast Cherenkov-based time-of-flight system.

The SuperB detector concept is shown in Fig. 1. The top portion of this elevation view shows the minimal set of new detector components, with the most reuse of current Babar detector components; the bottom half shows the configuration of new components required to cope with higher beam backgrounds and to achieve greater hermeticity.

2.1 Physics Performance

The SuperB detector design as described in the Conceptual Design Report [1] left open a number of questions that have a large impact on the overall detector geometry. The main issues include estimating the physics impact of a PID device in front of the forward EMC, the role of an EMC in the backward region, the position of the innermost layer of the SVT and its internal geometry, the SVT-DCH transition radius, and the amount and distribution of absorber in the IFR.

These issues have been addressed by evaluating the detector performance in the reconstruction of charged and neutral particles as well as the overall sensitivity of the detector for a set of benchmark decay channels. To accomplish this task a fast simulation code specifically developed for the SuperB detector has been used (sec. 9), combined with a complete set of analysis tools inherited for the most part from the Babar experiment. A GEANT4 based code has been used to simulate the primary sources of machine-induced and physics processes in order to estimate the rates and occupancies of various sub-detectors as a function of the position. The main results of these ongoing studies are summarized in this section.

Time-dependent measurements are an important part of the SuperB physics program. In order to achieve a proper-time difference (Δt) resolution comparable to that at Babar, the reduced boost at SuperB must be compen-
Figure 1: Concept for the SuperB detector. The upper half shows the baseline concept, and the bottom half adds a number of detector optional configurations.

Satisfy with an improved vertex resolution. This can be accomplished by placing the innermost layer of the SVT (Layer0) as close as possible to the IP. The main factor limiting the minimum distance from the IP is the hit rate from $e^+e^- \rightarrow e^+e^-e^+e^-$ background events. Two candidate detector technologies with appropriate characteristics, measured by thickness (radiation length X_0) and hit resolution, for application in Layer0 are: hybrid pixel detector with $1.08\% X_0$ and $14\mu m$ hit resolution and striplet with $0.40\% X_0$ and $8\mu m$ hit resolution. Simulation studies of $B^0 \rightarrow \phi K_S$ decays have shown that with a boost of $\beta\gamma = 0.28$ the hybrid pixels and the striplets reach a sin $2\beta_{eff}$ per event error equal to B_{AAR} at an inner radius of 1.5 cm and 2.0 cm, respectively. With $\beta\gamma = 0.24$ the error increases by 7.8%. Similar conclusions also apply to $B^0 \rightarrow \eta^{\prime} e^-$. These results will be used in deciding the Layer0 radius as well as the appropriate detector technology.

The BaBar SVT five-layer design was motivated by the requirement of standalone tracking for low-p_T tracks and redundancy in case several modules failed during operations. The default SuperB SVT design, consisting of a BaBar-like SVT detector and an additional layer0, has been compared with two alternative configurations made of a total of 5 or 4 layers. These simulation studies, which used the decay $B^0 \rightarrow D^*K$ as a benchmark channel, focused on the impact of the detector configuration on track quality as well as on the reconstruction efficiency for low p_T tracks. The studies have shown that, as
2.1 Physics Performance

expected, the low-p_T tracking efficiency is significantly decreased for configurations with reduced number of SVT layers, while the track quality is basically unaffected. Given the importance of low-p_T tracking efficiency for the SuperB physics program, these results support a six-layer layout.

Studies have also shown that the best overall SVT+DCH tracking performance is achieved if the outer radius of the SVT is kept small (14 cm as in BaBar or even less) and the inner wall of the DCH is as close to the SVT as possible. However, some space between the SVT and DCH is needed to allocate the cryostats for the super-conducting magnets in the interaction region. This constraint is expected to limit the minimum DCH inner radius to about 20-25 cm.

The impact of a forward PID device is estimated using benchmark modes such as, B \rightarrow K^{\pi} \nu \bar{\nu}, weighting the advantage of having a better PID information in the forward region with the drawbacks arising from more material in front of the EM calorimeter and a slightly shorter DCH. Three detector configurations have been compared in these simulation studies: BaBar, the SuperB baseline (no forward PID device), and a configuration that includes a time-of-flight (TOF) detector between the DCH and the forward EMC. The results, presented in terms of S/\sqrt{S+B}, for the decay mode B \rightarrow K \nu \bar{\nu} with the tag side reconstructed in the semileptonic modes, are shown in Fig. 2. In summary, while the default SuperB design leads to an improvement of about 7-8% in S/\sqrt{S+B}, primarily due the reduced boost in SuperB, the configuration with the forward TOF provides an additional 5-6% improved sensitivity for this channel. However, at this point, the machine backgrounds were not included in these simulations, but will be considered in the updates of these ongoing studies.

The backward calorimeter under consideration is designed to be used in veto mode. Its impact on physics can be estimated by studying the sensitivity of rare B decays with one or more neutrinos in the final state, which benefit from having a more hermetic detection of neutrals to reduce the background contamination. One of the most important benchmark channels of this kind is B \rightarrow \tau \nu. Preliminary studies, not including the machine backgrounds, indicate that when the backward calorimeter is installed the statistical precision S/\sqrt{S+B} is enhanced by about 8%. The results are summarized in Fig. 3. The top plot shows how S/\sqrt{S+B} changes as a function of the cut on \textit{E}_{\text{extra}} (the total energy of charged and neutral particles that cannot be directly associated with the reconstructed daughters of the signal or tag B) with and without the backward EMC. The signal is peaked at zero. The bottom plot shows the ratio of S/\sqrt{S+B} as a function of the \textit{E}_{\text{extra}} cut. The analysis will be repeated including the main sources of machine background, which can affect the \textit{E}_{\text{extra}} distributions significantly. The possibility of using the backward calorimeter as a PID time-of-flight device is under study.

The presence of a forward PID or backward EMC affects the maximum extension of the DCH and therefore the tracking and the \textit{dE/dx} performance in those regions. The impact of the TOF PID detector is practically negligible because it only takes a few centimeters from the DCH. On the other hand, the effect of a forward RICH device (~20 cm DCH length reduction) or the backward EMC (~30 cm) is somewhat larger. For example, for tracks with polar angles

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{S/\sqrt{S+B} \textit{B} \rightarrow K \nu \bar{\nu} as a function of the integrated luminosity in three detector configurations.}
\end{figure}
2.2 Challenges on Detector Design

The problem of the machine background is one of the leading challenges of the SuperB project: each subsystem must be designed so that its performances are minimally degraded because of the occupancy produced by the background hits. Moreover the detectors must be protected against deteriorations arising from radiation damage. In effect, what is required is to achieve detector performances and operational lifetimes similar or better than those achieved in BABAR but at a two order of magnitude higher luminosity.

Backgrounds particles produced by beam gas scattering and by the synchrotron radiation near the interaction point (IP) are expected to be manageable since the relevant design parameters (mainly the beam current) is fairly close to those in PEP-II.

Tomashch backgrounds are expected to be larger than in BABAR because of the extremely low design emittances of the SuperB beams. Preliminary simulation studies indicate that a system of beam collimators upstream of the IP can reduce the particle losses to tolerable levels.

The main source of concern arises from the background particles produced at the IP by QED processes whose cross section is of order of 300 mb, that at the nominal SuperB luminosity corresponds to a rate order of 200 GHz. The main process is the radiative Bhabha reaction (i.e.: $e^+e^- \rightarrow e^+e^-\gamma$), where one of the incoming beam particles losses a significant fraction of its energy by the emission of a photon. Both the photon and the radiating beam particles emerge from the IP traveling almost collinearly with respect to the beam-line. The magnetic elements downstream of the IP steer these primary particles into the vacuum chamber walls producing electromagnetic showers, whose final products are the background particles seen by the subsystems. The particles of these electromagnetic showers can also excite the giant nuclear resonances in the material around the beam line expelling neutrons from the nucleus. A careful optimization of the mechanical aperture of the vacuum chambers and of the optical functions is needed to keep a large stay clear for the off-energy primary particles, hence reducing the background rate.

SuperB Detector Progress Report
2.3 Open Issues

A preliminary Geant4-based Monte Carlo simulation study of this process at SuperB indicates that a shield around the beam line will be required to keep the electrons, positrons, photons and neutrons away from the detector, both to keep occupancies and radiation damage at a comfortable level.

Besides the radiative Bhabha reaction, the “quasi elastic Bhabha” process was also considered. The cross section for producing a primary particle reconstructed by the detector via this process is of order 100 mb that correspond to a rate of about 100 kHz. It is reasonable to assume that this will be the driving term of the level one trigger rate. Single beam contributions to the trigger rate are in fact expected to be of the same order as in BaBar, given that fact the nominal beam currents and the other relevant design parameter are comparable.

The final luminosity related background effect is the production of electron positron pairs at the IP by the two photon process $e^+ e^- \rightarrow e^+ e^- e^+ e^-$, whose total cross section evaluated at leading order with the Monte Carlo generator DELPHI [2] is 7.3 mb, corresponding at nominal luminosity, to a rate of 7.3 GHz. The pairs produced by this process are characterized by very soft transverse momenta particles. The solenoidal magnetic field in the tracking volume confines most of these background particles inside the beam pipe. The particles having a transverse momentum large enough to reach the beam pipe ($p_t > 2.5$ MeV/c) and with a polar angle inside the layer 0 acceptance are produced at a rate of ~ 0.5 GHz. This background will be a driving factor in the design of the segmentation and the read-out architecture of the SVT layer 0. The background track surface rate on the SVT layer 0 as a function of radius is reported on Fig.4.

An effort to improve the simulation of these background sources with a Geant4 based code is underway at present. A fairly accurate model of the detector model and of the beam line elements is available to the collaboration. Several configurations have been simulated and studied providing some guidelines to the detector and machine teams. The finalization of the interaction region and detector design will require further developments of the Geant4 background simulation tools on the detector response side.

2.3 Open Issues

The basic geometry, structure and physics performance of the SuperB detector is predetermined, in the main, by the retention of the solenoidal magnet, return steel, and the support structure from the BaBar detector, and a number of its largest, and most expensive, subsystems. Even though this fixes both the basic geometry, and much of the physics performance, it does not really constrain the expected performance of the SuperB detector in any important respect. BaBar was already an optimized BaBar detector for physics and any improvements in performance that could come from changing the overall layout of rebuilding the large subsystems would be modest overall. The primary challenge for SuperB is to retain physics performance similar to BaBar in the higher background environment described in subsection 2.2, while operating at much higher (≈ 50) data taking rates.

Within these constraints, optimization of the geometrical layout and new detector elements...
for the most important physics channels remains of substantial interest. The primary tools for sorting through the options are (1) simulation performed under the auspices of a Detector Geometry Working Group, that studies basic tracking, PID, and neutrals performance of different detector configurations, including their impact on each other, and studies the physics reach of a number of benchmark channels; and (2) detector R&D, including prototyping, developing new subsystem technologies, and understanding the costs, and robustness of systems, as well as their impacts on each other. The first item, discussed in subsection 2.1, clearly provides guidance to the second, as discussed in subsection 2.4 and the subsystem chapters which follow, and vice versa. At the level of the overall detector, the immediate task is to define the sub-detector envelopes. Optimization can and will continue for some time yet within each sub-detector system. The studies performed to date leave us with the default detector proposal, with only a few open options remaining at the level of the detector geometry envelopes and technology choices. These open issues are: (1) whether there is a forward PID detector, and, if so, at what a location does the DCH end and the EMC begin, and (2) whether there is, or is not, a backward EMC. These open issues are expected to be resolved by the Technical Board within the next few months following further studies by the Detector Geometry Working Group, in collaboration with the relevant system groups.

2.4 Detector R&D

The SuperB detector concept rests, for the most part, on well validated basic detector technology. Nonetheless, each of the sub-detectors has many challenges due to the high rates and demanding performance requirements with R&D initiatives ongoing in all detector systems to improve the specific performance, and optimize the overall detector design. These are described in more detail in each subsystem section.

The SVT innermost layer has to provide good space resolution while coping with high background. Although silicon strip detectors are a mature option at moderate background levels, a pixel system would certainly be more robust against background. However, keeping the material in a pixel system low enough not to deteriorate the vertexing performance is challenging, and there is considerable activity to develop thin hybrid pixels or, even better, monolithic active pixels. These devices may be part of planned upgrade path and installed as a second generation layer 0. Efforts are directed towards the development of sensors, high rate readout electronics, coupling systems and mechanical support with low material content.

In the DCH, many parameters must be optimized for SuperB running, such as the gas mixture and the cell layouts. Precision measurements of fundamental gas parameters are ongoing, as well as studies with small cell chamber prototypes and simulation of the properties of different gas mixtures and cell layouts. A possible improvement in the performance of the DCH is the innovative Cluster Counting method, in which a single cluster of charge are measured time-wise and counted, improving the resolution on the track specific ionization and the space accuracy. This technique requires significant R&D to be proven feasible in the experiment.

Through the Barre1 PID system takes over major components from NTD, the new camera and readout concept are significant departure from the RICH system, requiring extensive R&D. The challenges include the performance of pixelated PMTs for DIRC, the design of the fused silica optical system, the coupling of the fused silica optics to the existing bar boxes, the mechanical design of the camera, and the choice of electronics. Many of the individual components of the new camera are now under active investigation by members of the PID group, and studies are underway with a single bar prototype located in a cosmic ray telescope at SLAC. A full scale (1/12 azimuth) prototype incorporating the complete optical design is planned for cosmic ray tests during the next two years.

End cap PID concepts are less developed, and whether or not they match the physics re-
requirements and the expected detector performance remains to be demonstrated. Present R&D is centered on developing a good conceptual understanding of different proposed concepts, on simulating how their performance affects the physics performance of the detector, and on conceptual R&D for components of specific devices to validate concepts and highlight the technical and cost issues.

The EMC barrel is a well understood device at the lower luminosity of BaBar. Though there will be some technical issues associated with refurbishing, the main R&D needed at present is to understand the effects of pile-up in simulation, so as to be able to design the appropriate front-end shaping time for the readout.

The forward and backward EMCs are both new devices, using cutting edge technology. Both will require one or more full beam tests, hopefully at the same time, within the next year or two. Prototypes for these tests are being designed and constructed.

Systematic studies of IFR system components have been performed in a variety of bench and cosmic ray tests, leading to the present proposed design. This design will be beam tested in a full scale prototype currently being prepared for a Fermilab beam. This device will demonstrate the muon identification capabilities as a function of different iron configurations, and will also be able to study detector efficiency and spatial resolution.

At present, the Electronics, DAQ, and Trigger (ETD), have been designed for the base luminosity of \(1 \times 10^{36} \text{cm}^{-2}\text{sec}^{-1}\), with adequate headroom. Further R&D is needed to understand the requirements at a luminosity up to 4 times greater, and to insure that there is a smooth upgrade path when the present design is inadequate. On a broad scale, as discussed in the system chapter, each of the many components of ETD have numerous technical challenges that will require substantial R&D as the design advances.

References

3 Silicon Vertex Tracker

3.1 Detector concept

3.1.1 SVT and Layer0

The Silicon Vertex Tracker, as in BABAR together with the drift chamber (DCH) and the solenoidal magnet provide track and vertex reconstruction capability for the SuperB detector. Precise vertex information, primarily extracted from precise position measurements near the IP by the SVT, is crucial to the measurements of time-dependent CP asymmetries in B decays, which remains a key element of the SuperB physics program. In addition, charged particles with transverse momenta lower than 100 MeV/c will not reach the central tracking chamber, so for these particles the SVT must provide the complete tracking information.

These goals have been reached in the BABAR detector with a five-layer silicon strip detector, shown schematically in Fig. 5. The BABAR SVT provided excellent performance for the whole life of the experiment, thanks to a robust design that took into account the physics requirements as well as enough safety margin, to cope with the machine background, and redundancy considerations. The SuperB SVT design is based on the BABAR vertex detector layout with the addition of an innermost layer closer to the IP (Layer0). The Layer0 close-in position measurements lead to an improved vertex resolution, which is expected to largely compensate for the reduced boost at the SuperB thus retain the proper time-difference resolution for B decays achieved in BABAR. Physics studies and background conditions, as explained in detail in the next two sections, set stringent requirements on the Layer0 design: radius of about 1.5 cm, high granularity (50-50 µm² pitch), low material budget (about 1% X₀), and adequate radiation resistance.

For the Technical Design Report preparation, several options are under study for the Layer0 technology, with different levels of maturity, expected performance and safety margin against background condition. These include, striplets modules based on high resistivity sensors with short strips, and hybrid pixels and other thin pixel sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology. The current baseline configuration of the SVT Layer0 is based on the striplets technology, which has been shown to provide the better physics performance, as detailed in next section. However, options based on pixel sensors, more robust in high background conditions, are still being discussed with specific R&D programs.

The SVT angular acceptance, constrained by the interaction region design, will be 300 mrad in both the forward and backward directions, corresponding to a solid angle coverage of 95% in the center-of-mass frame.

3.1.2 Performance Studies

The SuperB interaction region design is characterized by the small size of the transverse section of the beams, at the level of few µm for σₓ, and hundreds of nm for σᵧ. Therefore it is expected to be possible to reduce the radial dimension of the beampipe to around 1 cm, while preventing the beams from scattering into the beampipe material within the detector coverage angle. The total amount of radial material of the berillium beampipe, which includes a few µm of gold foil, and a water cooling channel,
is estimated to be less than 0.3% \(X_0 \). For the proposed SuperB boost, \(\beta_v = 0.29 \) for 7 GeV \(e^- \) beam against a 4 GeV \(e^- \) beam, the average \(B \) vertex separation along the \(z \) coordinate, \(\langle \Delta r \rangle = \beta_v \gamma T_0 = 125\mu m \), is around half of that in BABAR, where \(\beta_v = 0.55 \). In order to maintain a suitable resolution on \(\Delta z \) for time-dependent analyses, the proper time difference between the two \(B \) decays, it is necessary to improve the vertex resolution (by about \(5\% \) for factor 2) with respect to that achieved in BABAR, typically \(50 - 80 \mu m \) in \(z \) for inclusively reconstructed modes and \(100 - 150 \mu m \) for inclusively reconstructed modes (the typical resolution for the tagging side in CPV measurements). The six-layer SVT solution for SuperB with the Layer0 setting much closer to the IP than that in BABAR would significantly improve track parameter determination, matching the more demanding requirements on the vertex resolution, while maintaining the stand-alone tracking capabilities for low momentum particles.

The choice among the various options under consideration for the Layer0 has to take into account the physics requirements for the vertex resolution, depending on the pitch and the total amount of material of the modules. In addition, to assure optimal performance for track reconstruction, the sensor occupancy has to be maintained under a few percent level, imposing further constraints on the sensor segmentations and on the front-end electronics. Simulation hardness is also an important feature, although it is expected not to be particularly demanding compared to the LHC detector specifications.

The Monte Carlo simulation program FastSim \[7\] has been used to study track and vertex reconstruction performance of various SVT configurations, providing estimates of the \(B \) decay vertex resolution as well as \(\Delta t \) resolution for time-dependent CPV measurements. We have considered several benchmark channel, including \(B \to \pi^+ \pi^- \), \(\phi K \) and also decay modes where the impact of the Layer0 on the decay vertex determination is expected to be less important, such as \(B \to K^+ K^-, K^0_S \). For each mode we have studied the resolution on \(\Delta t \) and the per-event error on the quantity of physics interest, namely \(\sin(2\beta_{\gamma\tau}) \) in studies.

The main conclusion is that the baseline SuperB SVT design, the six-layer design made to an improved \(\Delta t \) resolution over that achieved in BABAR allowing for a comparable (or even better) per-event error on \(\sin(2\beta_{\gamma\tau}) \) for the \(B \) decay modes considered in this study. This conclusion is valid for all candidate technologies that have been considered for Layer0 and for reasonable values of the Layer0 radius and amount of radial material. As an example, in Fig. 6 is reported the resolution on \(\Delta t \) for different Layer0 radii as a function of the Layer0 thickness (in \(X_0 \% \)) compared to the BABAR reference value.

Figure 5: Longitudinal section of the SVT
The dashed line represents the BABAR reference value using the nominal value of the boost in PEP-II, $\beta \gamma = 0.55$.

We have also studied the impact of a possible Layer0 inefficiency on $\sin(2\beta)$ sensitivity. The source of inefficiency could be related to several causes, for example a much higher background rate than expected, causing dead time in the readout of the detector. In Fig. 7 is reported the $\sin(2\beta_{eff})$ per-event error for the $B \to \phi K_S$ decay mode as a function of the Layer0 hit efficiency for different Layer0 technology options. The Layer0 radius in the study is about 1.6 cm. The results show that the striplet solution provides better performances, both with respect to the BaBar even for the case of some (small) hit inefficiency, and other Layer0 solutions. The main advantage of the striplet solution is the smaller material budget (about 0.5% X_0) compared to the Hybrid pixel (about 1% X_0) and the MAPS solutions (about 0.7% X_0). For particles of momenta up to few GeV/c, the multiple scattering effect is the dominant source of uncertainty in the determination of their trajectory, thus a low material budget detector provides a clear advantage. A striplet-based Layer0 solution would also have a better intrinsic hit resolution about 8 μm with respect to the MAPS and the Hybrid Pixel (about 14 μm with a digital readout) solutions. For these reasons a Layer0 based on striplets has been chosen as the baseline solution for SuperB capable to cope with the machine background according to the present estimates.

3.1.3 Background Conditions

Background considerations influence several aspects of the Silicon Vertex Tracker design: readout segmentation, electronics shaping time, data transmission rate and radiation hardness. Severe requirements are especially imposed on the Layer0 design. The different sources of background have been simulated with a detailed Geant4-based detector model and beamline description to estimate their impact on the experiment [3]. The background hits expected in the external layers of the SVT (radius > 3 cm) are mainly due to processes that scale with beam currents, similar to background seen in the present BaBar SVT. The background at the Layer0 radius is primarily due to luminosity terms, in particular the $e^+e^- \to e^+e^-\gamma\gamma$ pair production, with radiative Bhabha events an order of magnitude smaller. Despite the huge
cross section of the pair production process, the rate of tracks originating from this process hitting the Layer0 sensors is strongly suppressed by the 1.5 Tesla magnetic field of the SuperB detector. Particles produced, with low transverse momenta, loop in the detector magnetic field and only a small fraction reaches the SVT layers, with a strong radial dependence.

According to these studies the track rate at the Layer0 at a radius of 1.5 cm is at the level of about 5 MHz/cm2, mainly due to electrons in the MeV energy range. The equivalent fluence corresponds to about 3.5×10^{12} n/cm2/yr, corresponding to a dose rate of about 3 Mrad/yr. This provides a safety factor of five for the estimated background level.

3.2 Layer0 options under study

In this section we summarize the current status of the studies of the various Layer0 options, aimed at the eventual preparation of the SuperB Technical Design Report.

3.2.1 Striplets

Double-sided silicon strips detectors (DSSD), 200 μm thick, with 50 μm readout pitch represent a proven and robust technology, meeting the requirements on the SVT Layer 0 design, as described in the CDR [1]. In this design, short strips will be placed at an angle of $\pm 45^\circ$ to the detector edge on the two sides of the sensor, as shown in Fig 8.

The strips will be connected to the readout electronics through a multilayer flexible circuit glued to the sensor. A standard technology with copper traces is already available, although an aluminium microcable technology is being explored to reduce the impact on material of the interconnections.

The data-driven, high-bandwidth FSSR2 readout chip [3], is a good match to the Layer 0 striplet design and is also suitable for the readout of the outer layer strip sensors. It has 128 analog channels providing a sparsified digital output with address, timestamp and pulse height information for all hits. The selectable shaper peaking time can be programmed down to 65 ns. The chip has been realized in a 0.25 μm CMOS technology for high radiation tolerance. The readout architecture has been designed to operate with a 132 ns clock that will define the timestamp granularity and the readout window. A faster readout clock (70 MHz) is used in the chip, with a token pass logic, to scan for the presence of hits in the digital section, and to transmit them off-chip, using a selectable number of output data lines. With six output lines, the chip can achieve an output data rate of 840 Mb/s. With a 1.83 cm strip length the expected occupancy in the 132 ns time window is about 12%, considering a hit rate of 100 MHz/cm2, that includes the cluster multiplicity and a factor 5 safety margin on the simulated background track rate. The FSSR2 readout efficiency has never been measured with this occupancy. First results from ongoing Verilog simulations indicate the efficiency is 90% or more. As shown in Fig. 7 the physics impact of such an inefficiency is modest. Nonetheless it may be possible to redesign the digital readout of the FSSR2 to increase the readout efficiency at high occupancy.

A total equivalent noise charge of 600 e^- rms is expected, including the effects of the strip and flex circuit capacitance, as well as the metal series resistance. The signal to noise for a 200 μm detector is about 26, providing a good noise.
margin. It is also foreseen to conduct a market survey to evaluate whether different readout chips, possibly with a triggered readout architecture, may provide better performance.

Because of the unfavorable aspect ratio of the sensors, the readout electronics need to be rotated and placed along the beam axis, outside of the sensitive volume of the detector, held by a carbon fiber mechanical structure, as shown in Fig. 9. The 8 modules forming Layer 0 will be mounted on flanges containing the cooling circuits. For the baseline design with striplets, the Layer0 material budget will be about 0.46% X₀ for perpendicular tracks, assuming a silicon sensor thickness of 200 µm, a light module support structure (100 µm Silicon equivalent), similar to that used for the BaBar SVT modules, and the multilayer flex contribution (3 flex layers/module, 45 µm Silicon equivalent/layer). A reduction in the material budget to about 0.35% X₀ is possible if kapton/aluminum micro-cable technology can be employed with a trace pitch of about 50 µm.

3.2.2 Hybrid Pixels

Hybrid pixels technology represents a mature and viable solution but still requires some R&D to meet Layer0 requirements (reduction in the front-end pitch and in the total material budget, with respect to hybrid pixel systems developed for LHC experiments). A front-end chip for hybrid pixel sensors with 50 × 50 µm² pitch and a fast readout is under development. The adopted readout architecture has been previously developed by the SLIM5 Collaboration [4] for CMOS Deep NWell MAPS [5], [6]: the data-push architecture features data sparsification on pixel and timestamp information for the hits. This readout has been recently optimized for the target Layer0 rate of 100 MHz/cm² with promising results: VHDL simulation of a full size matrix (1.3 cm²) gives hit efficiency above 96% operating the matrix with a 60 MHz readout clock. A first prototype chip with 4k pixels has been submitted in September 2009 with the ST Microelectronics 130 nm process and is currently under test. The front-end chip, connected by bump-bonding to an high resistivity pixel sensor matrix, will be then characterized with beams in Autumn 2010.

3.2.3 MAPS

CMOS MAPS are a newer and more challenging technology. Their main advantage with respect to hybrid pixels is that they could be very thin, having the sensor and the readout incorporated in a single CMOS layer, only a few tenth of microns thick. As the readout speed is another relevant aspect for application in the SuperB Layer0, we proposed a new design approach to CMOS MAPS [5] which for the first time made it possible to build a thin pixel matrix featuring a sparsified readout with timestamp information for the hits [6]. In this new design the deep N-well (DNW) of a triple well commercial CMOS process is used as charge collecting electrode and is extended to cover a large fraction of the elementary cell (Fig. 3.2.3). Use of a large area collecting electrode allows the designer to include also PMOS transistors in the front-end, therefore taking full advantage of the properties of a complementary MOS technology for the design of high performance analog and digital blocks. However, in order to avoid a signif-
significant degradation in charge collection efficiency, the area covered by PMOS devices and their N-wells, acting as parasitic collection centers, has to be small with respect to the DNW sensor area. Note, that the use of a charge preamplifier as the input stage of the channel makes the charge sensitivity independent of the detector capacitance. The full signal processing chain implemented at the pixel level (charge preamplifier, shaper, discriminator and latch) is partly realized in the p-well physically overlapped with the area of the sensitive element, allowing the development a complex in-pixel logic with similar functionalities as in hybrid pixels.

Several prototype chips (the “APSEL” series) have been realized with the STMicroelectronics, 130 nm triple well technology and demonstrated that the proposed approach is very promising for the realization of a thin pixel detector. The APSEL4D chip, a 4k pixel matrix with 50 x 50 μm² pitch, with a new DNW cell and the simplified readout has been characterized during the SLIM5 testbeam showing encouraging results [7]. Hit efficiency of 92% has been measured, a value compatible with the present sensor layout that is designed with a fill factor (i.e. the ratio of the electrode over the total n-well area) of about 90%. Margins to improve the detection efficiency with a different sensor layout are being currently investigated [8].

Several issues still need to be solved to demonstrate the ability to build a working detector with this technology, which required further R&D. Among others, the scalability to larger matrix size and the radiation hardness of the technology are under evaluation for the TDR preparation.

3.2.4 Pixel Module Integration

To minimize the detrimental effect of multiple scattering on track parameter resolution, the reduction of the material is crucial for all the components of the pixel module in the active area.

The pixel module support structure needs to include a cooling system to evacuate the power dissipated by the front-end electronics, about 2W/cm², present in the active area. The proposed module support will be realized with a light carbon fiber support with integrated microchannels for the coolant fluid (total material budget for support and cooling below 0.3 % X₀).

Measurements on first support prototypes realized with this cooling technique indicate that a cooling system based on microchannels can be a viable solution to the thermal and structural problem of Layer0 [10].

The pixel module will also need a light multilayer bus (Al/kapton based with total material budget of about 0.2 % X₀), with power/signal inputs and high trace density for high data speed to connect the front-end chips in the active area to the HDI hybrid, in the periphery of the module. With the data push architecture presently under study and the high background rate, the expected data with a 160 MHz clock need to be transferred on this bus. With triggered readout architecture (also under investigation) the complexity of the pixel bus, and material associated, will be reduced.

Considering the various pixel module components (sensor and front-end with 0.4% X₀, support with cooling, and multilayer bus with decoupling capacitors) the total material in the active area for the Layer0 module design based on hybrid pixel is about 1% X₀. For a pixel module design based on CMOS MAPS, where the contribution of the sensor and the integrated readout electronics become almost negligible, 0.05% X₀, the total material budget is about 0.65% X₀. A schematic drawing of the full Layer0 made of 8 pixel modules mounted around the beam.
3. Silicon Vertex Tracker

Figure 11: Schematic drawing of the full Layer0 made of 8 pixel modules mounted around the beam pipe with a pinwheel arrangement.

pipe with a pinwheel arrangement is shown in Fig. 3.2.4.

Due to the high background rate at the Layer0 location, radiation-hard fast links between the pixel module and the DAQ system located outside the detector should be adopted. For all Layer0 options (that currently share a similar data push architecture) the untriggered data rate is 16 Gbit/s/readout section, assuming a background hit rate of 100 Mhz/cm². Triggered data rate is reduced to about 1 Gbit/s/readout section.

The HDI, positioned at the end of the module, outside the active area, will be designed to host several IC components: some glue logic, buffers, fast serializers, drivers. The components should be radiation hard for the application at the Layer0 location (several Mrad/yr).

The baseline option for the link between the Layer0 modules and the DAQ boards is currently based on a mixed solution. A fast copper link is foreseen between the HDI and an intermediate transition board, positioned in an area of moderate radiation levels (several tens of krad/yr). On this transition card the logic with LV1 buffers will store the data until the reception of the LV1 trigger signal and only triggered data will be sent to the DAQ boards with an optical link of 1 Gbit/s. The various pixel module interfaces will be characterized in a test set-up for the TDR preparation.

3.3 A MAPS based all-pixel SVT using a deep P-well process

Another alternative under evaluation is to have an all-pixel SVT using MAPS pixels with a pixel size of 50x50 µm. This approach uses the 180 nm INMAPS process which incorporates a deep P-well. A perceived limitation of standard MAPS is not having full CMOS capability as the additional N-wells from the PMOS transistors parasitically collect charge, thus reducing the charge collected by the readout diode. Avoiding the usage of PMOS transistors however does limit the capability of the readout circuitry significantly. A limited use of PMOS is allowed with the DNW MAPS design (APSEL chips), which anyway accounts for a small degradation in the collection efficiency. Therefore, a special deep P-well layer was developed to overcome the problems mentioned above. The deep P-well protects charge generated in the epitaxial layer from being collected by parasitic N-wells for the PMOS. This then ensures that all charge is being collected by the readout diode and maximises charge collection efficiency. This is illustrated in Figure 12. This enhancement allows the use of full CMOS circuitry in a MAPS and opens completely new possibilities for in-pixel processing. The TPAC chip [11] for CALICE-UK [12, 13] has been designed using the INMAPS process. The basic TPAC pixel has a size of 50 × 50 µm and comprises a preamplifier, a shaper and a comparator [11]. The pixel only stores hit information in a Hit Flag. The pixel is running without a clock and the timing information is provided by the logic querying the Hit Flag. For the SuperB application the pixel design was slightly modified. Instead of just a comparator, a peak-hold latch was added to store the analog information as well. The chip is organised in columns with a common ADC at the end of each column. The ADC is realised as a Wilkinson ADC using a 5 MHz clock rate. The simulated power consumption...
3.4 R&D Activities

The technology for the Layer 0 baseline striplet design is well-established. However, the front-end chip to be used, due to the expected high background occupancy, requires some deeper investigation. Performance of the FSSR2 chip, proposed for the readout of the striplets and the outer layer strip sensors, is being evaluated as a function of the occupancy with Ver-

An advantage of the MAPS is the elimination of a lot of readout electronics, because everything is already integrated in the sensor, which simplifies the assembly significantly. Also since we are using an industry CMOS processes, there is a significant price advantage compared to standard HEP-style silicon and the additional savings due to the elimination of a dedicated readout ASIC.

In order to evaluate the physics potential of MAPS based all-pixel vertex detector, we are currently evaluating the performance of the SuperB detector with different geometries of the SVT, ranging from the SuperB baseline (Layer0 + 5 layers based on strip detectors), through to a 4 or 6 layer all-pixel detector with a realistic material budget for the support structure for all layers.

3.4 R&D Activities

The technology for the Layer 0 baseline striplet design is well-established. However, the front-end chip to be used, due to the expected high background occupancy, requires some deeper investigation. Performance of the FSSR2 chip, proposed for the readout of the striplets and the outer layer strip sensors, is being evaluated as a function of the occupancy with Ver-
ilog simulation. Measurements are also possible in a testbench in preparation with real striplets modules readout with the FSSR2 chips. The design of the digital readout of the chip will be investigate to improve its efficiency. The modification of the analog part of the chip for the readout of the long module of the external layers are currently under study. The multilayer flexible circuit, to connect the striplets sensor to the front-end electronics, may benefit from some R&D to reduce the material budget, either to reduce the minimum pitch on the complex circuit, or adopt kapton/aluminum microcables and Tape Automated Bonding soldering techniques with a 50 \(\mu \text{m} \) pitch.

Although silicon striplets are a viable option at moderate background levels, a pixel system would certainly be more robust against background. Keeping the material in a pixel system low enough not to deteriorate the vertexing performance is challenging, and there is considerable activity to develop thin hybrid pixels or, even better, monolithic active pixels. These devices may be part of a planned upgrade path and installed as a second generation layer 0. A key issue for the readout of the pixels in the Layer0 is the development of a fast readout architecture to cope with a hit rate of the order of 100MHz/cm². A first front-end chip for hybrid pixel sensor with 50 \(\times \) 50 \(\mu \text{m} \) pitch and a fast readout, data-driven with timestamp for the hits, has been realized and is currently under test. A further development of the architecture is being pursued to evolve toward a triggered readout architecture.

The development of a thin mechanical support structure with integrated cooling for the pixel module is continuing with promising results. Prototypes with light carbon fiber microchannels for the coolant fluid (total material down to 0.15% X0) have been produced and tested and are able to evacuate specific power up to 1.5W/cm² maintaining the pixel module temperature within the requirements. These supports could be used for hybrid pixels as for MAPS sensors.

References

References

This page contains no comments
4 Drift Chamber

The SuperB drift chamber provides measurements of the charged particle momentum and of the ionization energy loss used for particle identification. This is the only device in SuperB to measure velocities of particles having momenta below approximately 700 MeV/c. It is based on the BaBar design, with 60 layers of centimeter-sized cells strung approximately parallel to the beam line \cite{1}. A subset of layers are strung at a small stereo angle in order to provide measurements along \(z \), the beam axis.

The drift chamber is required to provide momentum measurements with the same precision as the BaBar drift chamber (approximately 0.4\% for tracks with a transverse momentum of 1 GeV/c), and like BaBar uses a helium-based gas mixture in order to minimize measurement degradation from multiple scattering. The challenge is to achieve comparable or better performance than BaBar in a high luminosity environment. Both physics and background rates will be significantly higher than in BaBar and as a consequence the system is required to accommodate the 100-fold increase in trigger rate and luminosity-related backgrounds primarily composed of radiative Bhabhas and electron-pair backgrounds from two-photon processes. However, the beam current related backgrounds will only be modestly higher than in BaBar. The nature and spatial distributions of these backgrounds dictate the overall geometry of the drift chamber.

The ionization loss measurement is required to be at least as sensitive to particle discrimination as BaBar, which has a \(dE/dx \) resolution of 7.5\%. In BaBar, conventional \(dE/dx \) drift chamber methods were used in which the total charge deposited on each sense wire was averaged after removing the highest 20\% of the measurements as a means of controlling Landau fluctuations. In addition to this conventional approach, the SuperB drift chamber group is exploring a cluster counting option which, in principle, can improve the \(dE/dx \) resolution by approximately a factor of two. This technique involves counting individual clusters of energy released in the gas ionization process. In so doing, we remove the sensitivity of the specific energy loss measurement to fluctuations in the number of electrons produced in each cluster, which significantly limit the intrinsic resolution of conventional \(dE/dx \) measurements. As no experiment has employed cluster counting, this is very much a detector research and development project but one which potentially yields significant physics payoff at SuperB.

4.1 Backgrounds

The dominant source of background in the SuperB DCH is expected to be radiative Bhabha scattering. Photons radiated collinearly to the initial \(e^- \) or \(e^+ \) direction can bring the beams off-orbit and ultimately produce showers on the machine optical elements. This process can happen meters away from the interaction point and the hits are in general uniformly distributed over the whole drift chamber volume. Large-angle \(e^+ e^- \rightarrow e^+ e^- (\gamma) \) scattering, on the other hand, has the well-known \(1/\theta^4 \) cross section dependence; simulation studies are currently underway to evaluate the need to design tapered endcaps (either conical or with stepped shape) at small radii to keep under control the occupancy in the very forward region of the detector. The actual occupancy and its geometrical distribution in the detector depend on the details of the machine elements, on the amount and placement of shields, on the drift chamber geometry, and on the time needed to collect the signal in the detector. Preliminary results obtained with GEANT4 simulations indicate that in a 1 ps time window at nominal luminosity \((10^{31} \text{cm}^{-2}\text{s}^{-1}) \) the occupancy averaged over the whole drift chamber volume is 3.5\%, and slightly larger (about 5\%) in the inner layers. Intense work is presently underway to validate these results and study their dependence on relevant parameters.
4.2 Drift Chamber Geometry

The SuperB drift chamber will have a cylindrical geometry. The inner radius and length of the chamber are being re-optimized through detailed simulation studies with respect to different values of the drift chamber inner radius R_{min} since:

a) due to the increased lever arm, momentum resolution improves as the minimum drift chamber radius R_{min} decreases, see Fig. 13; R_{min} is actually limited by mechanical integration constraints with the cryostats.

b) The momentum and especially the dE/dx resolution for tracks going in the forward and backward directions are clearly affected by the change in number of measuring samples when the chamber length is varied of 10–30 cm. However the fraction of such tracks is so small that the overall effect is negligible.

![Figure 13: Track momentum resolution for different values of the drift chamber inner radius.](image)

4.3 Mechanical Structure

The drift chamber mechanical structure must sustain the wire load – about 3 tons for 10000 cells with small deformations, while at the same time minimizing the material for the surrounding detectors. Carbon fiber-resin composites have high elastic modulus and low density, thus offering performances superior to Aluminum-alloys based structures. Endplates with curved geometry can further reduce material thickness with respect to flat endplates for a given deformation under load. For example, the KLOE drift chamber [2] features 8 mm thick Carbon Fiber spherical endplates of 4 m diameter. Preliminary design of Carbon Fiber endplates for SuperB indicate that adequate stiffness (≤ 1 mm maximum deformation) can be obtained with 5 mm thick spherical endplates, corresponding to $0.02X_0$ to be compared with $0.13X_0$ for the BaBar DCH aluminum endplates.

Figure 14 shows two possible endcap layouts, respectively with spherical (a) or stepped (b) endplates. A convex spherical endplate is considered, which would provide a better match to the geometry of the forward PID and calorimeter systems, and would reduce the impact of the endplate material on the performance of those detectors, at the cost of
greater sensitivity to the large-angle Bhabha background.

4.4 Gas Mixture

The gas mixture for SuperB should satisfy the requirements which already concurred to the definition of the BARI drift chamber gas mixture (80% He − 20% C_{2}H_{6}), i.e., low density, small diffusion coefficient and Lorentz angle, low sensitivity to photons with \(E \sim 10\) keV. To match the more stringent requirements on occupancy rates of SuperB, it could be useful to select a gas mixture with a larger drift velocity in order to reduce ion collection times and so the probability of hits overlapping from unrelated events. The cluster counting option would instead call for a gas with low drift velocity and primary ionization. As detailed in Section 4.6, R&D work is ongoing to optimize the gas mixture for the SuperB environment.

4.5 Cell Design and Layout

The baseline design for the drift chamber employs small rectangular cells arranged in concentric layers about the axis of the chamber which is approximately aligned with the beam direction. The precise cell dimensions and number of layers are still to be determined, but it is expected that their side is between 10 and 20 mm and that there are approximately 40 layers as in BARI. The cells are grouped radially into superlayers with the inner and outer superlayers parallel to the chamber axis (axial). In BARI the chamber also had stereo layers in which the superlayers are oriented at a small “stereo” angle relative to the axis in order to provide the z-coordinate of the track hits. The details of the stereo layer layout in SuperB is still to be determined on the basis of the cell occupancy associated with machine backgrounds.

Each cell has one 20\(\mu \)m diameter gold coated sense wire surrounded by a rectangular grid of eight field wires. The sense wires will be tensioned with a value consistent with electrostatic stability and with the yield strength of the wire. The baseline calls for a gas gain of approximately \(5 \times 10^{4} \) which requires a voltage of approximately +2 kV to be applied to the sense wires with the field wires held at ground. The field wires are aluminum with a diameter which will be chosen to keep the electric field on the wire surface below 20 kV/cm as a means of suppressing the Malter effect. These wires will be tensioned in order to provide a gravitational sag that matches that of the sense wires.

At a radius inside the innermost superlayer the chamber has an additional layer of axially strung guard wires which serve to electrostatically contain very low momentum electrons produced from background particles showering in the DCH inner cylinder and SVT. A similarly
4.6 R&D work

Various R&D programs are underway towards the definition of an optimal drift chamber for SuperB, in particular: make precision measurements of fundamental parameters (drift velocity, diffusion coefficient, Lorentz angle) of potentially useful gas mixtures; study the properties of different gas mixtures and cell layouts with small drift chamber prototypes and simulations; verify the potential and feasibility of the cluster counting option.

A precision tracker made of 3 cm diameter Aluminum tubes operating in limited streamer mode with a single tube spatial resolution of around 100 μm has been set up. A small prototype with a cell structure resembling the one used in the BaBar DCH has also been built and commissioned. The tracker and prototype chamber have been collecting cosmic ray data since October 2009. Tracks can be extrapolated in the DCH prototype with a precision of 80 μm or better. Different gas mixtures have been tried in the prototype: starting with the original BaBar mixture (80%He − 20%C$_4$H$_{10}$) used as a calibration point, both different quencher proportions and different quenchers (e.g. methane instead of isobutane) have been tested in order to assess the viability of lighter and possibly faster operating gas. Fig. 15a shows the space-time correlation for one prototype cell; as mentioned before, the cell structure is such as to mimic the overall structure of the BaBar DCH. Spatial resolution is consistent with what has been obtained with the original BaBar DCH. A space to time relation is depicted in Fig. 15b with a 52%He − 48%CH$_4$ gas mixture. This gas is roughly a factor two faster and 50% lighter than the original BaBar mix: preliminary analysis shows space resolution performances comparable to the original mix; however detailed studies of the Lorentz angle have to be carried out in order to consider this mixture as a viable alternative.

Figure 15: Examples of measured space-time relation in different He-based gas mixtures.

To improve performances of the gas tracker a possible road could be the use of the Cluster Counting method. If the individual ionization cluster can be detected with high ef-
5 Particle Identification

5.1 Detector concept
The DIRC (Detector of Internally Reflected Cherenkov light) [1] is an example of innovative detector technology that has been crucial to the performance of the Babar science program. Excellent flavor tagging will continue to be essential for the program of physics anticipated at SuperB, and the gold standard of particle identification in this energy region is agreed to be that provided by internally reflecting ring-imaging devices (the DIRC class of ring-imaging detectors). The challenge for SuperB is to retain (or even improve) the outstanding performance attained by the Babar DIRC [2], while also gaining an essential factor of 100 in background rejection to deal with the much higher luminosity.

We are planning to build a new Cherenkov ring imaging detector for the SuperB barrel, called the Focusing DIRC, or FDIRC. It will use the existing Babar bar boxes and mechanical support structure. We will attach to this structure a new photon “camera”, which will be optically coupled to the bar box window. The new camera design combines a small modular focusing structure that images the photons onto a focal plane instrumented with very fast, highly pixelated, photon detectors (PMTs). These elements should combine to attain the desired performance levels while being at least 100 times less sensitive to backgrounds than the Babar DIRC.

We are also considering several options for a possible PID detector in the forward direction. The design variables in our consideration are: (a) modest cost, (b) small mass in front of the LYSO calorimeter, and (c) enlarge the total PID coverage at low momenta, removal of a dE/dx ambiguity in π/K separation near 1 GeV/c. Presently, we are considering the following technologies: (a) “DIRC-like” time-of-flight [3], (b) pixelated TOF [4] and (c) Aerogel RICH [5]. The aim is to design the best possible

References

SuperB Detector Progress Report
5.2 Barrel PID at SuperB

SuperB detector by optimizing physics, performance and the cost, while being constrained to the existing BaBar geometry.

5.1.1 Charged particle identification at SuperB

The charged particle identification at SuperB relies on the same framework as the BaBar experiment. Electrons and muons are identified by the E- and dE/dx, respectively, aided by dE/dx measurements in the inner trackers (SVT and DCH). Separation for low-momentum hadrons is primarily provided by dE/dx. At higher momenta (above 0.7 GeV/c for pions and hadrons, above 1.3 GeV/c for protons), a dedicated system, the PID system, together with an active R&D effort to determine the physics impact of a forward PID system, with an active R&D effort on possible detector technologies.

5.1.2 BaBar DIRC

The BaBar DIRC is a novel ring-imaging Cherenkov detector. The Cherenkov light is produced in ultra-pure synthetic fused silica bars and its image is preserved while propagating along the bar via internal reflections to the detector.

The entire DIRC has 144 quartz bars, each 4.9 m long, which are set along the beam line and cover the whole azimuthal range. Thanks to an internal reflection coefficient of ~0.9997, Cherenkov photons are transported to the back end of the bars with the magnitude of their angles conserved. They exit in a large volume of purified water (a medium chosen because of its average index of refraction and its chromaticity index are very close to those of the fused silica), the stand-off box (SOB). The PMTs are located at the rear of the SOB, about 1.2 m away from the quartz bar exit window.

Figure 16: Schematic of the BaBar DIRC.

The reconstruction of the Cherenkov angle was informed from the tracking system together with the positions of the PMT hits in the DIRC. In addition, information on the time of arrival of hits is used in rejecting background hits.

The BaBar DIRC performed reliably and efficiently over the whole BaBar data taking period (1999-2007). It physics performance remained consistent throughout the run period, although some upgrades, such as addition of shielding, and replacement of electronics, were necessary to cope with machine conditions. Its main performance parameters are the following:

- measured time resolution of about 1.5 ns, close to the PMT transit time spread of 1.5 ns;
- single photon Cherenkov angle resolution of 9.6 mrad for dimuon events;
- Cherenkov angle resolution of 2.5 mrad in dimuon events;
- $K - \pi$ separation above 10 σ from the pion Cherenkov threshold up to 4.2 GeV/c.

5.2 Barrel PID at SuperB

5.2.1 Performance optimization

As discussed above, the PID system in SuperB must cope with much higher background rates...
than in BABAR current estimates are on the order of 100 times higher. A new photon camera concept, based on a focusing optics, is therefore envisioned to reduce the background exposure area. The focusing blocks (FBLOCK), responsible for imaging the Cherenkov photons on the PMT cathode surfaces, would be machined out from radiation-hard solid pieces of fused silica. The major design constraints for the new camera are the following: (a) it must be consistent with the existing BABAR bar box design as those elements will be reused in SuperB; (b) it must to coexist with the BABAR magnet mechanical constraints; (c) it requires a very fine photon detector pixelation.

The imaging is provided by a mirror structure focused onto an image plane containing highly pixelated photomultiplier tubes. The reduced volume of the new camera and the use of fused silica for coupling to the bar boxes (in place of water as it was in BABAR SOB) is expected to reduce the sensitivity to background by about one order of magnitude compared to BABAR DIRC. The very fast timing of the new PMT’s is expected to provide many additional advantages: (a) an improvement of the Cherenkov resolution; (b) a measure of the chromatic dispersion term in the radiator [6, 7, 8]; (c) the separation of ambiguous solutions in the folded optical system; and (d), another order of magnitude improvement in background rejection.

Fig. 17 shows the new FDIRC camera design (see Ref. [9] for more detail). It consists of two parts: (a) the focusing block (FBLOCK) with cylindrical and flat mirror surfaces and (b) a new wedge. The new wedge is necessary to rotate all rays onto the FBLOCK cylindrical mirror. It was necessary to add this element to assure that all rays reflect onto the FBLOCK flat mirror, preventing reflections back into the bar box itself; the flat mirror then reflects them onto the detector focal plane with an incidence angle of almost 90°, thus avoiding reflections. The focal plane is located in a slightly under-focused position to reduce the FBLOCK size and therefore its weight. Exactly focusing is not necessary, as the finite pixel size would not take advantage of it. The total weight of the solid Fused silica FBLOCK is about 80 kg. This significant weight requires a good mechanical support.

There are several important advantages to moving from the BABAR pinhole focused design to a focused optical design made of solid Fused Silica: (a) the design is modular; (b) sensitivity to background, especially to neutrons, is significantly reduced; (c) the pinhole-size component of the angular resolution in the focusing plane can be removed and timing can be used to measure the chromatic dispersion, thus improving performance; (d) the total number of multi-anode photomultipliers (MaPMT) is reduced by about one half compared to a new focusing design with equivalent performance; (e) there is no risk of water leaks into the SuperB detector, and no time-consuming maintenance of a water system, as was required to operate BABAR safely.

The new camera will be attached to the BABAR bar box with an optical RTV glue, which will be injected in a liquid form between the bar box window and the new camera and will cure in this state. As Fig. 17 shows, focusing is in the radial (y) direction with a cylindrical mirror, while pinhole focusing is used in the direction out of the plane of the schematic (the x-direction). Photons that enter the FBLOCK at large x-angles reflect from the parallel sides, leading to an additional ambiguity. However, the folded design makes the optical piece small, and places the photon detectors in an accessible location, improving both the mechanics and the background sensitivity. Since the optical mapping is 1 to 1 in the y-direction, this reflection does not create an additional ambiguity. Since a given photon bounces inside the FBLOCK only 1-3 times, the requirements on surface quality and polishing for the optical piece are much less stringent than that required for the DIRC bar box radiator bars. This significantly reduces the cost of the system.

SUPERB Detector Progress Report
5.2 Barrel PID at SuperB

(a) FDIRC optical design (dimensions in cm).
(b) Its equivalent in the GEANT 4 MC model.

Figure 17: Barrel FDIRC Design.

The internal exiting DIRC wedge has a 6 mrad angle at the bottom. This was done intentionally for RBar to do a simple focusing in the pinhole optics to reduce the effect of a bar thickness. However, this angle somewhat worsens the new FDIRC optics resolution. We have two choices: (a) either leave it as it is or (b) glue a micro-wedge. Adding the micro-wedge at the bottom of the old wedge is possible in principle, although it is not a trivial operation, as one has to open the bar box.

The performance of the new FDIRC is simulated with a GEANT 4 based program [10]. The preliminary results for the expected Cherenkov angle resolution are shown in Table 1 for different layouts [10]. Design #1, which has emerged as the preferred design (a 3 mm × 12 mm pixel size with the micro-wedge glued in) gives a resolution of ∼ 8.1 mrad for 4 GeV/c pions at θ_{dip} = 90°. This can be compared with Babar DIRC measured resolution of ∼ 9.6 mrad for di-muon events. If we decide not to glue in the micro-wedge (design #2), the resolution will increase to 8.8 mrad, i.e., we lose about 0.7 mrad. Going to a coarser pixilization of 6 mm × 12 mm will worsen the Cherenkov angle resolution by about ∼ 1 mrad (see designs #3 & #4). If one adds the chromatic correction to the Cherenkov angle using the timing information on each photon [6, 9, 11] the FDIRC resolution may improve by an additional 0.5-1 mrad.

5.2.2 Design and R&D status

We plan to use Multianode Photomultiplier Tubes (MaPMT) as photon detectors. They are highly pixilated and about 10 times faster than the Babar DIRC PMTs. Their performance has been tested and proven in high rate environments such as the HERA-B experiment. Two PMT pixilization options are under consideration. A pixel size of 3 mm × 12 mm can be achieved by shorting pads of the Hamamatsu 256-pixel H-9509 MaPMT, resulting in 64 readout channels per MaPMT. Fig. 18(a) [11] shows the single photoelectron response of this tube with such pixilization, normalized to the Photonis Quantacon PMT. Each camera will have ∼ 48 H-9509 MaPMT detectors, which corre-
Table 1: FDIRC performance simulation by GEANT 4 MC.

<table>
<thead>
<tr>
<th>FDIRC Design</th>
<th>Option</th>
<th>θC resolution [mrad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 mm × 12 mm pixels w.</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>a micro-wedge</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 mm × 12 mm pixels n.</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>a micro-wedge</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6 mm × 12 mm pixels w.</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>a micro-wedge</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6 mm × 12 mm pixels n.</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>a micro-wedge</td>
<td></td>
</tr>
</tbody>
</table>

We are considering several choices for the FDIRC electronics. One option is to use a leading edge discriminator with a 100 ps/count TDC, together with an additional ADC. This allows to perform pulse height corrections to improve timing resolution, which is aimed at a level of 150-200 ps per single photon. An alternative choice is to use a waveform digitizing electronics, either based on the Waveform catcher concept [12] or the BLAB chip design [13]. These choices will be made during the R&D period.

Fig. 19 shows a possible design for the mechanical support. Each bar box has its own FBLOCK support, light sealing and individual access for maintenance. Each FBLOCK, weighing almost 100 kg, is supported on rods with ball bearings to be able to bring it very precisely to the bar box. The optical coupling between the FBLOCK and the bar box is done with an RTC coupling. Similarly, detectors are coupled to FBLOCK with an RTV cookie. There is a common magnetic shield mounted on hinges, which would allow an easy access to the detector. This is possible because the entire volume of the new focusing optics is about 10 times smaller than the BARM SOB.

We will test various electronics choices in the SLAC cosmic ray telescope (CRT) [14] with the FDIRC single bar prototype. We plan to set up a full size DIRC bar box equipped with the new focusing optics to run in the cosmic ray telescope in 2010-11. In parallel, we intend to revive a scanning setup to test photodetectors with the new electronics. Test bench setups are also planned at LAL-Orsay and in the University of Maryland.

SUPERB Detector Progress Report
5.2 Barrel PID at SuperB

(a) Single photoelectron response of H-9500 MaPMT with 3 mm × 12 mm pixels.
(b) Similar scan of H-8500 MaPMT with pixels: 6 mm × 6 mm.

Figure 18: Single photoelectron response of MaPMTs.

(a) Mechanical enclosure and support of the FBLOCK with the new wedge.
(b) Overall mechanical support design with the new magnetic shield door.

Figure 19: Possible mechanical design for the FDIRC.
Finally, a summary budget projecting the costs of the barrel FDIRC can be found in Section 11.

5.3 Forward PID at SuperB

5.3.1 Motivation for a forward PID detector

The barrel FDIRC detector will ensure a good hadron identification, while its PID performance between 1 and 2 GeV/c is relatively poor. This method is challenging as the whole detector chain (the hard-cone region, hadron identification would only rely on dE/dx measurements from the DCH in a Bal4-like design. The performances of such devices are limited above 700 MeV/c due to the π/K ambiguity near 1 GeV/c and relatively poor PID performance between 1 and 2 GeV/c. This explains why various balloon physics analyses would have benefited from additional dedicated PID systems on both ends of the detector. Gains in hermiticity and semi-leptonic B reconstruction efficiencies provide higher efficiency in various exclusive backgrounds. In addition, the hadronic and semi-leptonic B reconstruction efficiency would be improved as well. For some of these channels, the reconstruction efficiency and the purity significantly improves: the higher the number of charged particles in the reconstructed final states, the faster the gain. Dedicated Monte-Carlo studies aiming at quantifying these improvements are ongoing within the Detector Geometry Working Group (DGWG).

For the backward side of SuperB, the EMC group is proposing a backward calorimeter which looks promising. Even if the energy resolution is not good enough to reconstruct ν's, detecting activity in this device helps reduce π→ν background for instance. Moreover, as the momenta of backward-going particles are quite low in average, a moderate timing resolution (around 100 ps) would make this device useful for a time-of-flight-based separation of hadrons.

The forward region covers a larger fraction of the SuperB geometrical acceptance than the backward because of the boost, although it is still less than 10% of the total. Another consequence of the beam energy asymmetry is that the particles crossing this region have higher momenta in average. Space is also limited in this area which is located at the interface between the DCH and the EMC endcap. All these constraints make more challenging the design of a suitable PID device. Moreover, the forward PID group is investigating this option in details with the help of the DGWG. The status of this ongoing R&D effort is reported in Section 5.3.3.

5.3.2 Forward PID requirements

A SuperB forward PID detector should be thin to fit well in the space between the DCH endplate and the EMC endcap: at most a thickness of ~ 10 cm. If it were bigger, the geometry and position of the nearby detectors would have to be modified: either a shorter DCH or a forward shift of the EMC crystals. Moreover, the X0 of this new device should be kept as low as possible, in order to avoid degrading the reconstruction of electromagnetic showers in the EMC endcap. Finally, the cost of such detector must be studied with respect to the cost of the barrel PID, probably in proportionality to its solid angle fraction.

5.3.3 Status of the forward PID R&D effort

Three designs of forward PID detectors are currently investigated: a “DIRC-like” time-of-flight detector, a “pixelated” time-of-flight detector and a focusing aerogel RICH, the “FARICH”.

“DIRC-like” time-of-flight detector concept

In this scheme [3], charged tracks cross a thin layer of quartz in which Cherenkov photons are emitted along the particle trajectories. These photons are then transported through internal reflections to one side of the quartz volume where they are detected by PMTs located outside of the SuperB acceptance. The PID separation is provided by the timing of the photons: at given momentum, kaons fly more slowly than pions as they are heavier. This method is challenging as the whole detector chain (the hard-
ware and the reconstruction software) must be very accurate: for instance, 3 GeV/c kaon and pion are only separated by about 90 ps after 2 meters – roughly the expected particle flight distance using the current SuperB layout. On the other hand, such detector should fit without problem in the available space between the DCH and EMC and its X_0 is the smallest of all the studied layouts.

“Pixelated” time-of-flight detector concept
Like for the previous design, the Cherenkov light is produced in a quartz radiator [4]. However, in this case it is made of Al-coated cubes, which are matching pixelated photodetectors coupled to them. This layout makes the reconstruction much easier (a given track would only produce light in a particular pixel whose location would be predicted by the tracking algorithms), it is insensitive to chromatic time broadening, and it is less sensitive to background. On the other hand, the radiation length X_0 is larger as the photodetectors are located in front of the EMC calorimeter. In addition, as PMTs with excellent timing resolution (such as MCP-PMTs) and able to operate at 16 kG are very expensive, the total cost of this detector would exceed the DIRC-like solution by a significant factor.

However, we are presently investigating another possible iteration to this scheme: can one use the LYSO crystal fast light component to do a decent TOF measurement of about ∼100 ps? This would be sufficient to resolve the π/K ambiguity near 1 GeV/c (where dE/dx is useless) and help PID below 700 MeV/c.

FARICH concept The FARICH detector [5] uses a 3-layer aerogel radiator with focusing effect and a water radiator. The Cherenkov light is detected by a wall of pixelated MCP-PMTs. MC simulations predict a π/K separation at the 3 σ/5 level and better up to 5 GeV/c and a π/μ separation up to 1 GeV/c. The amount of material is about the same as in the “pixelated” time-of-flight design while the number of channels is 4 times larger. The FARICH has the best PID performance of all detectors proposed for the forward direction. Its main drawbacks are thickness, cost and absence of beam test results.

Summary of “DIRC-like” time-of-flight studies
Fig 20 shows the current layout of the “DIRC-like” time-of-flight (TOF) detector, as implemented in GEANT 4-based simulations. Twelve tiles (1.2 cm thick) of fused silica provide a good azimuthal coverage of the forward side of the SuperB detector. The photons are transported inside the fused silica volume until the inner part of the tile where they are detected by MCP-PMTs. Simulations are in progress to understand and optimize the detector response to signal Cherenkov photons. The main topics addressed by these studies are the following.

- The pitch angle of the tiles with respect to the endcap calorimeter. With a null angle, photons from the tracks hitting the outermost part of the tiles will not be transported by internal reflection to the PMTs. Moreover, the larger this angle, the lower the momentum threshold from which internal reflections are guaranteed. On the other hand, the radiation length X_0 is larger as the photodetectors are located in front of the EMC calorimeter.
other hand this angle cannot be too large: first, because the space between the DCH and the EMC is limited; second, because the uniformity of the calorimeter response is affected by this value.

- The use of a photon trap applied on the tile sides at large radius in order to select the photons which are allowed to propagate up to the PMTs. The final timing resolution is the result of a trade-off between the number of photoelectrons and their spread in time. The highest timing accuracy is due to photons propagating either directly or with one side bounce. One wants to prevent multiple reflections which only result in lower accuracy. This loss of accuracy is caused by the chromatic broadening of the timing resolution for photons with a long optical path length.

- The optimization of the tile thickness. The thicker it is, the higher the number of Cherenkov photons emitted. However, as these photons are distributed uniformly along the particle trajectory, their emission time spread increases as well. Moreover, the tiles should be kept thin in order to minimize pre-showering in front of the calorimeter endcap.

- There are many other effects to be taken into account given the timing accuracy goal: (a) the T_0 resolution due to bunch length, (b) the track length, direction and position in the quartz tile; (c) the quartz tile geometrical accuracy and alignment; (d) the detector transit time spread; (e) the electronics resolution; (f) the chromatic broadening; etc.

- One has also to demonstrate that this detector will be able to run at 16 kHz and will survive very high rates with small aging effects. This is a crucial issue for this particular concept.

In addition, as this new apparatus would have to be installed in a small and quite populated area between the DCH and the EMC forward endcap, its integration requires inputs and feedbacks from the two neighboring systems. In particular, a joint “DIRC-like” time-of-flight & forward EMC mechanical design is mandatory as this new detector must be located as close as possible from the calorimeter endcap to minimize the loss of information due to pre-showers in the additional material.

Finally, the full timing accuracy of the “DIRC-like” TOF detector should be very good to achieve the $\pi - K$ separation goal: a few tens of ps at most. As the front-end electronics must not be limiting the precision of the measurements, their precision must be at the few ps level. Therefore, R&D programs are currently ongoing in Hawaii and LAL in order to design waveform digitizing electronics able to fulfill these requirements while being cheap enough and robust enough.

References

6 Electromagnetic Calorimeter

The SuperB electromagnetic calorimeter (EMC) provides energy and direction measurement of photons and electrons, and is an important component in the identification of electrons versus other charged particles. The system contains three components, shown in Fig. 1: the barrel calorimeter, reused from BaBar; the forward endcap calorimeter, replacing the BaBar forward endcap; and the backward endcap calorimeter, a new device improving the backward solid angle coverage. Table 2 details the solid angle coverage of each calorimeter. The total solid angle covered for a massless particle in the center-of-mass (CM) is 94.1% of 4π.

In addition to the BaBar simulation for the barrel calorimeter, simulation packages for the new forward and backward endcaps have been developed, both in the form of a full simulation using the GEANT4 toolkit and in the form of a fast simulation package for parametric studies. These packages are used in the optimization of the calorimeter and to study the physics impact of different options.

6.1 Barrel Calorimeter

The barrel calorimeter for SuperB is the existing BaBar Cal(A) crystal calorimeter. Estimated rates and radiation levels indicate that this system will continue to survive and function in the SuperB environment. It covers 2π in azimuth and polar angles from 26.8° to 141.8° in the lab. There are 48 rings of crystals in polar angle, with 120 crystals in each azimuthal ring, for a total of 5,760 crystals. The crystal length ranges from 16X₀ to 17.5X₀. They are readout by two redundant PIN diodes connected to a multirange amplifier. A source calibration system allows calibrating the calorimeter with 6.13 MeV photons from the 32P decay chain. The barrel calorimeter will be largely unchanged for SuperB, we indicate planned changes here.

SuperB Detector Progress Report
Table 2: Solid angle coverage of the electromagnetic calorimeters. Values are obtained assuming the barrel calorimeter is in the same location with respect to the collision point as for BABAR.

The CM numbers are for massless particles and nominal 4 on 7 GeV beam energies. The barrel SuperB row includes one additional ring of crystals over BABAR.

<table>
<thead>
<tr>
<th>Calorimeter</th>
<th>(\cos \theta) (lab) (\cos \theta) (CM)</th>
<th>(\Omega) (CM) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td>(-0.974) (-0.869) (-0.985) (-0.922)</td>
<td>3.1</td>
</tr>
<tr>
<td>Barrel (BABAR)</td>
<td>(-0.786) (0.893) (-0.870) (0.824)</td>
<td>84.7</td>
</tr>
<tr>
<td>Barrel (SuperB)</td>
<td>(-0.805) (0.893) (-0.882) (0.824)</td>
<td>85.2</td>
</tr>
<tr>
<td>Forward</td>
<td>(0.896) (0.985) (0.829) (0.941)</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Adding one more ring of crystals at the backward end of the barrel is under consideration. These crystals would be obtained from the current BABAR forward calorimeter, that will not be reused in SuperB. Space is already available for the additional crystals in the existing mechanical structure, although some modification would be required to accommodate the additional readout.

The existing barrel PIN diode readout is kept at SuperB. In order to accommodate the higher event rate, the shaping time is decreased. The existing ‘CARE’ chip [2] covers the required dynamic range by providing four different gains to be digitized in a 10 bit ADC. However, this system is old, and the failure rate of the analog-to-digital boards (ADBs) is unacceptably high. Thus, a new ADB has been designed, along with a new analog board, the Very Front End board, shown in Fig. 21. The new design incorporates a dual-gain amplifier, followed by a twelve-bit ADC. In order to provide good least-count resolution on the 6 MeV calibration source, an additional calibration range is provided on the ADB. The existing PIN diodes with the redundancy, are expected to continue to perform satisfactorily. They are epoxied to the crystals and changing them would be a difficult operation.

6.2 Forward Endcap Calorimeter

The forward electromagnetic calorimeter for SuperB is a new device replacing the BABAR CsI(Tl) forward calorimeter, with coverage starting at the end of the barrel and extending down to 270 mrad \((\cos \theta = 0.965)\) in the laboratory. Because of the increased background levels, a faster and more radiation hard material, such as LYSO or pure CsI, is required in the forward calorimeter. The baseline design is based on LYSO (Lutetium Yttrium Orthosilicate, with Cerium doping) crystals. The advantages of LYSO include a much shorter scintillation time constant (LYSO: 40 ns, CsI(Tl): 680 ns and 3.34 \(\mu \)s), a smaller Molière radius (LYSO: 2.1 cm, CsI: 3.6 cm), and greater resistance to radiation damage. One radiation length is 1.14 cm in LYSO and 1.86 cm in CsI. An alternative choice...
There are 20 rings of crystals, arranged in four groups of 5 layers each. The crystals maintain the almost projective geometry of the barrel. Each group of five layers is arranged in modules five crystals wide. The preferred endcap structure is a continuous ring. However, the numbers of modules in each group layers are multiples of 6, allowing the detector to be split in two halves, should that be necessary from installation considerations. The grouping of crystals is summarized in Table 3 and illustrated in Fig. 22.

Table 3: Layout of the forward endcap calorimeter.

<table>
<thead>
<tr>
<th>Group</th>
<th>Modules</th>
<th>Crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>900</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>1200</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>1200</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>1050</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4500</td>
</tr>
</tbody>
</table>

Each crystal is up to $2.5 \times 2.5 \text{cm}^2$ at the back end, with a projective taper to the front. The maximum transverse dimensions are dictated by the Molière radius and by the desire to obtain two crystals from a boule. The length of each crystal is approximately 20 cm, or $17.5 \times X_0$.

6.2.1 Mechanical Structure

The support structure for the crystals is an alveolar (or, a sort of egg-crate structure, with a cell for each crystal) constructed of either carbon fiber or glass fiber bounded by two conical structures at the radial extremes. To minimize the dead material between the endcap and the barrel, the outer cone is made of carbon fiber with a thickness between 6 and 10 mm. The inner cone is instead made of 20 to 30 mm-thick aluminum.

With the inclusion of the source calibration system, described below, and the front cooling system, the total front wall thickness may reach 20-30 mm. A good solution that minimizes material in front of the calorimeter is to embed the pipes into the foam core of a sandwich panel completed by two skins of 2-3 mm carbon fiber. A lighter alternative under investigation is to use depressions in pressed aluminum sheets forming the two skins of the front wall to form the calibration and cooling circuits. The support at the back, providing the load-bearing support for the forward calorimeter, is constructed in stainless steel as either an open frame or closed plate.

6.2.2 Readout System

Two possible readouts are under study: PIN diodes as used the barrel and APDs (Avalanche Photodiodes). As for the barrel, redundancy is achieved with 2 APDs or PIN diodes per crystal. APDs, with a low-noise gain of order 50, offer the possibility of measuring signals from sub MeV radioactive sources. This would obviate the need for a step with photomultipliers during the uniformity measurement process during calorimeter construction. The disadvantage of APDs is the gain dependence on temperature, which can be of order $2\%/^\circ\text{C}$ (e.g. [4]). This requires tight control of the readout temperature. The same electronics as for the barrel is used,
with an adjustment to the VFE board gain with the APD choice.

6.2.3 Calibration and Beam Test

The source calibration system is a new version of the 6.13 MeV calibration system already used in BaBar, as also used for the barrel calorimeter. This system uses a neutron generator to produce activated 16N from fluorine in Fluorinert coolant [5] coolant. The activated coolant is circulated near the front of the crystals in the detector, where the 16N decays with a 7 s half-life. The 6.13 MeV photons are produced in the decay chain 16N\rightarrow16O*+β, 16O*+γ.

Two beam tests are planned to study the LYSO performance and the readout options. The first beam test is at Frascati’s Beam Test Facility, covering the 50-500 MeV energy range. The second beam test is at CERN, to cover the GeV energy range. In addition, a prototype alveolar is being constructed for the beam test structure.

6.2.4 Performance Studies

Simulation studies are underway to optimize the detector configuration. It is important to use a realistic clustering algorithm in these studies, since in actual events multiple particles can overlap, requiring clever pattern recognition. Fig. 23 shows how the measured energy distribution changes for different reconstruction algorithms.

Particular attention has been devoted to the study of the effect of material in front of the forward calorimeter, for instance due to a proposed forward PID device. Material in front of the calorimeter enhances the low-energy tail of the measurement, although peak width measures, such as the FWHM, are almost not affected, as shown in Fig. 24, for the case of 25 and 60 mm of quartz in front of the calorimeter.

A more meaningful measure that we may use is:

$$f_{90} = \frac{E_{90} - E_{90 \, \text{true}}}{E_{90 \, \text{true}}}$$

where $E_{90 \, \text{true}}$ is the energy of the generated photon and E_{90} gives the 90% quantile of the measured energy distribution, i.e., 90% of measurements of the photon energy are above this value. Fig. 25 shows the effect on the f_{90} measure of resolution as a function of the quartz thickness.

Ideally, the transition between the barrel and forward calorimeters should be smooth, in order to contain the electromagnetic showers and to keep pattern recognition simple. Some possibilities for particle identification however require the forward calorimeter to be moved back from the IP relative to the smooth transition point. The effect of this on photon energy resolution has been studied, see Fig. 26. The resolution degrades in the barrel-endcap transition region as expected, but there is substantially no dependence on the z-position.

6.3 Backward Endcap Calorimeter

The backward electromagnetic calorimeter for SuperB is a new device with the principal intent of improving hermeticity at modest cost. Excellent energy resolution is not a requirement, since there is significant material from the drift...
6.3 Backward Endcap Calorimeter

Clustering

- **No Clustering:**
 - $E_{\text{crystal}} > 1 \text{ MeV}$
 - Same as Slac meeting

- **Clustering:**
 - Clustering algorithm as (supposed to be) in BaBar:
 1. Start from maximum energy crystal
 2. Look for crystal around ME
 3. Sum crystal energy if $E > \text{digit threshold} (0.2 - 0.5 \text{ MeV})$
 4. If a crystal around the ME one has $E > \text{seed threshold} (2 - 3 \text{ MeV})$ look around it too
 - Adapted for LSO

- $5 \times 5 - 3 \times 3$ Matrix
 - Take maximum energy crystal and a matrix of crystals around it

100 MeV γ $1 \text{ GeV} \gamma$

Figure 23: Effect on the measured energy distribution for various reconstruction algorithms. The “No clustering” distribution results from simply adding all crystal energies greater than 1 MeV. The “Clustering” distribution results from the algorithm used in BaBar. The curves labeled 5×5 crystal matrix and 3×3 crystal matrix are simple sums of energy deposits in 25 or 9 crystals, respectively, centered on the crystal with the most energy. Left: 100 MeV photons; Right: 1 GeV photons.

Figure 26: Effect on resolution of z-position of forward calorimeter. Left: Resolution as a function of position for showers away from the edges of the forward calorimeter. Right: Resolution as a function of position for showers in the transition region between the barrel and forward calorimeters. Note the different scales.

SuperB Detector Progress Report
chamber in front of it. Thus a high quality crystal calorimeter is not planned for the backward region. The proposed device is based on a multi-layer lead-scintillator stack with longitudinal segmentation providing capability for \(\pi/e \) separation.

The backward calorimeter is located starting at \(z = -1320 \text{ mm} \), allowing room for the drift chamber front end electronics. The inner radius is 310 mm, and the outer radius 750 mm. The total thickness is 12 \(X_0 \). It is constructed from a sandwich of 2.8 mm Pb alternating with 3 mm plastic scintillator (e.g., BC-404 or BC-408). The scintillator light is collected for readout in wavelength-shifting fibers (e.g., 1 mm Y11).

To provide for transverse spatial shower measurement, each layer of scintillator is segmented into strips. The segmentation alternates among three different patterns for different layers:

- Right-handed logarithmic spiral;
- Left-handed logarithmic spiral; and
- Radial wedge.

This set of patterns is repeated eight times to make a total of 24 layers. With this arrangement, the fibers all emerge at the outer radius of the detector. There are 48 strips per layer, for a total of 1152 strips. The strip geometry is illustrated in Fig. 27.

It is desirable to maintain mechanical integrity by constructing the scintillator layers with several strips from a single piece of scintillator, and not completely severing them. Isolation is achieved by cutting grooves at the strip boundaries. The optimization of this with respect to cross-talk and mechanical properties is under investigation.

The readout fibers are embedded in grooves cut into the scintillator. Each fiber is read out at the outer radius with a \(1 \times 1 \text{ mm}^2 \) multi-pixel photon counter (MPPC, or SiPM, for “silicon photomultiplier”) [6]. A mirror is glued to each fiber at the inner radius to maximize light collection. The SPIROC (SiPM Integrated Read-Out Chip) integrated circuit [7] developed for the ILC is used to digitize the MPPC signals, providing both TDC (100 ps) and ADC (12 bit) capability. Each chip contains 36 channels.
6.4 R&D

A concern with the MPPC’s is radiation hardness. Degradation in performance is observed in studies performed for the SuperB IFR, beginning at integrated doses of order 10^8 1-MeV equivalent neutrons/cm2 [8]. This needs to be studied further, and possibly mitigated with shielding.

Simulation studies are being performed to investigate the performance gain achieved by the addition of the backward calorimeter. The $B \to \tau\nu$ decay presents an important physics channel where hermeticity is a significant consideration. The measurement of the branching fraction has been studied in simulations to evaluate the effect of the backward calorimeter. Events in which one B decays to $D^0\pi$, with $D^0 \to K^+\pi^-$, are used to tag the events, and several of the highest branching fraction one-prong τ decays are used.

Besides the selection of the tagging B decay, and one additional track for the τ, the key selection criterion is on E_{miss}, the energy sum of all remaining clusters in the EMC. This quantity is used to discriminate against backgrounds by requiring events to have low values; a reasonable criterion is to accept events with $E_{\text{miss}} < 400$ MeV.

In this study we find that the signal-to-background ratio is improved by approximately 20% if the backward calorimeter is present (Fig. 28). The corresponding improvement in precision (S/\sqrt{B}) for 75 ab$^{-1}$ is approximately 8% (Fig. 3). We note that only one tag mode has so far been investigated, and this study is ongoing with work on additional modes to obtain results for a more complete sample analysis. Also, the effect of background events superimposed on the physics event has not been fully studied.

The possibility of using the backward endcap for particle identification as a time-of-flight measuring device is also under investigation. Figure 29 shows, for example, for 100 ps timing resolution, a separation of more than three standard deviations can be achieved for momenta up to 1 GeV and approximately 1.5σ up to 1.5 GeV.

Figure 29: Kaon-pion separation versus measured momentum for different timing resolutions in the backward EMC region. The finite separation for perfect timing resolution is because measured momentum is used.

6.4 R&D

6.4.1 Barrel Calorimeter

The main R&D question for the barrel concerns the shaping time. Simulation work is underway to investigate pile-up effects from backgrounds. In addition, electronics and software issues connected with the possibility of adding one more ring of CsI crystals at the back end are still to be addressed.

6.4.2 Forward Calorimeter

The forward calorimeter is a new device, and we are planning for two beam tests are planned to test the performance of an LYSO crystal array as well as the solutions for the electronics and mechanical designs. The beam tests will also investigate the use of PIN diodes and APDs as readout options as well as the effect of material in front of the crystals in the beam test. Simulation work is ongoing to predict performance and backgrounds. There is an ongoing R&D effort with vendors to produce crystals with good light output and uniformity at an acceptable cost. The crystal support and integration of the cali-
6.4.3 Backward Calorimeter

A beam test of the backward calorimeter is also planned, probably concurrent with the forward calorimeter beam test at CERN. The mechanical support and segmentation of the plastic scintillator is being investigated for a solution that achieves simplicity and acceptable cross-talk. The use of multi-pixel photon counters is being studied, including the radiation damage issue. The timing resolution for a possible time-of-flight measurement is an interesting question. Further simulation studies are being made to characterize the performance impact of the backward calorimeter.

References

[5] Flourinert is the trademark name for polychlorotrifluoro-ethylene, manufactured by 3M Corporation, St. Paul, MN, USA.
7.1 Performance optimization

7 Instrumented Flux Return

The Instrumented Flux Return (IFR) is designed primarily to identify muons, and, in conjunction with the electromagnetic calorimeter, to identify neutral hadrons, such as K°. This section describes the performance requirements and a baseline design for the IFR. The iron yoke of the detector magnet provides the large amount of material needed to absorb hadrons. The yoke, as in the SuperB detector, is segmented in depth, with large area particle detectors inserted in the gap between segments, allowing the depth of penetration to be measured.

In the SuperB environment, the critical regions for the backgrounds are the small polar angles sections of the endcaps and the edges of the barrel internal layers, where we estimate that in the hottest regions the rate is a factor 100 Hz/cm². These rates are too high for gaseous detectors. While the RICH experience with both RPC’s and LST’s has been, in the end, positive, detectors with low rate capability are required in the high background regions of SuperB. A scintillator-based system provides much higher rate capability than the gaseous detectors. For this reason, the baseline technology choice for the SuperB detector is extruded plastic scintillator using wavelength shifting (WLS) fibers read out with avalanche photodiode pixels operated in Geiger mode. The following subsections describe in detail all components.

The IFR system must have high efficiency for selecting penetrating particles such as muons, while at the same time rejecting charged hadrons (mostly pions and kaons). Such a system is critical in separating signal events in b → sℓντ− and b → dℓντ+ processes from background events originating from random combinations of the much more copious hadrons. Positive identification of muons with high efficiency is also important in rare B decays as B → τντ− and B(ℓ′R) → μ+μ− and in the search for lepton flavour-violating processes such as τ → μγ. Background suppression in reconstruction of final states with missing energy carried by neutrinos (as in B → μγ[γγ]) can profit from vetoing the presence of energy carried by neutral hadrons. In the RICH detector, about 45% of relatively high momentum K°s interacted only in the IFR system. A K° identification capability is therefore required.

7.1 Performance optimization

7.1.1 Identification Technique

Muons are identified by measuring their penetration depth in the iron of the return yoke of the solenoid magnet. Hadrons shower in the iron, which has a hadronic interaction length λ = 16.5 cm. The survival probability to a depth d as exp(−d/λ) scales as exp(−d/λ). Fluctuations in shower development and decay in flight of hadrons with muons in the final state are the main source of hadron misidentification as muons. The penetration technique has a reduced efficiency for muons with momentum below 1 GeV/c, due to ranging out of the charged track in the absorber. Moreover, only muons with a sufficiently high transverse momentum can penetrate the IFR to sufficient depth to be efficiently identified.

Neutral hadrons interact in the electromagnetic calorimeter as well as in the flux return. A K° tends to interact in the inner section of the absorber, therefore K° identification capability is mainly dependent on energy deposited in the inner part of the absorber, thus a fine segmentation at the beginning of the iron stack is needed. Best performance can be obtained by combining the initial part of a shower in the electromagnetic calorimeter with the rear part in the inner portion of the IFR. An active layer between the two subsystems, external to the solenoid, is therefore desirable.

7.1.2 Baseline Design Requirements

The total amount of material in the RICH detector flux return (about 5 interaction lengths at normal incidence in the barrel region including the inner detectors) is suboptimal for μ identification [2]. Adding iron with respect to the

SuperB Detector Progress Report
7 Instrumented Flux Return

Babar flux return for the upgrade to the SuperB detector can produce an increase in the pion rejection rate at a given muon identification efficiency. One of the goals of the simulation studies is to understand if the Babar iron structure can be upgraded to match the SuperB muon detector requirements. A possible longitudinal segmentation of the iron is shown in Fig. 30. The three inner detectors are most useful for \(K^0 \) identification; the coarser segmentation in the following layers preserves the efficiency for low momentum muons.

![Figure 30: Sketch of the longitudinal segmentation of the iron absorber (red) in the baseline configuration. Active detector positions are shown in light blue from the innermost (left) to the outermost (right) layers.](image)

The layout presented in Fig. 30 has a total amount of 92 cm of iron and can allows the reuse of the Babar flux return with some mechanical modification. It is currently our baseline configuration, although it is only one among different possible designs that are under study. The final steel segmentation will be chosen on the basis of Monte Carlo studies of muon penetration and charged and neutral hadron interactions. Preliminary results of the simulation studies are shown in the next section.

7.1.3 Design optimization and performance studies

We are performing the detector optimization by means of a GEANT4 based simulation in order to have a reliable description of the hadronic showers. The simulation includes also some detector feature coming from R&D studies such as spatial resolution, detection efficiency and electronic noise. Single muons and pions with momentum ranging between 0.5 GeV/c and 4 GeV/c have been shot in the detector and their tracks reconstructed and analyzed to extract relevant quantities for a cut based muon selector. Preliminary results obtained using the baseline detector configuration reveal an average muon efficiency of about 87% with a pion contamination of 2.1% over the entire momentum range. The efficiency and misidentification probability for muons and charged pions as function of the particle momentum are shown in Fig. 31.

![Figure 31: Efficiency and misidentification probability for muons and charged pions as function of the particle momentum. Study performed with baseline detector configuration.](image)

Despite the good results obtained with the baseline configuration more extensive studies are needed before taking the final decision for the detector design: a fine comparison with other iron layouts will be done by means of a neural network algorithm for the particle identi-
7.2 R&D

Scintillators. Main requirements for the scintillator are a good light yield and a fast response. Both these requirements depend on the scintillator material characteristics and on the geometry adopted for the bar layout. Since more than 20 metric tons of scintillator will be used in the final detector, another major constraint is the cost that should be minimized. We found the extruded scintillator produced by the FNAL-NCADD facility (also used in the MI-NOS experiment [3]) suitable for our detector. Since the gaps between two iron absorbers are roughly 25 mm, the bar thickness shouldn’t exceed 20 mm. The bar width is 4 cm and the fibers are placed in 3 holes extruded with the scintillator. We have two possible layouts for the bars:

- 1 cm thick, filling the gap with two separate thin detection layers;
- 2 cm thick, filling the gap with only one thick active layer.

The two scintillator layouts have been used to study two different readout options: a Time readout and a Binary readout. In the Time readout, one coordinate is determined by the scintillator position and the other by the arrival time of the signal read with a TDC. In this case both coordinates are measured by the same 2 cm-thick scintillator bar, and there is therefore no ambiguity in case of multiple tracks, but the resolution of one coordinate is limited by the time resolution of the system that is about 1 ns. In the Binary readout option, the track is determined by two orthogonal 1 cm-thick scintillator bars. The spatial resolution is driven by the width of the bars (that is 4 cm as for the Time readout), but in case of multiple tracks a combinatorial association of the hits in the two views must be done.

WLS Fibers. The fibers are required to have a good light yield, to ensure a high detection efficiency and a time response fast enough to allow a ≈ 1 ns time resolution. WLS fibers from Saint-Gobain (BCF92) and from Kuraray (Y11-300) have been tested [4]. Both companies produce multiclad fibers with a good attenuation length (λ ≈ 3.5 m) and trapping efficiency (ε ≈ 5%), but Kuraray fibers have a higher light yield, while Saint-Gobain fibers have a faster response (with a decay time τ ≈ 2.7 ns, while for the Kuraray τ ≈ 9.0 ns).

Photodetectors. Recently developed devices, called Geiger Mode APDs, suit rather well the needs of converting the light signal in a tight space and high magnetic field environment. These devices have high gain (≥ 10^3), good Detection Efficiency (≥ 30%), fast response (rise-time ≈ 200 ps), and are very small (few mm) and insensitive to magnetic fields. On the other hand they have a rather high dark count rate (≈ 1 MHz/mm at 1.5 μA) and are sensitive to radiation. Both 1×1 mm^2 SiPM, produced by IRST-FBK, and MPPC, produced by Hamamatsu, have been tested [5]. The comparison between SiPMs and MPPCs showed a lower detection efficiency for the former but also a faster response and a less critical dependence from temperature and bias voltage. In order to couple the photodetector with up to four 1.0-mm-thick fibers, 2 mm^2 FBK and 3 × 3 mm^2 Hamamatsu devices have been tested; the latter was significantly noisier than the former, and the SiPM is therefore currently considered as the baseline.

7.2.1 R&D tests and results

R&D Studies were performed using mainly cosmic rays, with the setup placed inside a custom built 4 m long “dark box” to keep scintillators, fibers and photodetectors in a light-tight volume. Given the sensitivity to radiation, the possibility of placing the SiPMs in a low radiation area outside the detector, bringing the light signal to the photodetectors through about 10 m of clear fibers has been studied. The light loss,
that is expected to be about a factor 3 (confirmed by measurements) due to the attenuation length of the clear fiber, $\lambda \approx 10\,\text{m}$, can be partially recovered using more than one fiber per scintillator bar. Fig. 32 shows the comparison of the collected charge in a $2 \times 2\,\text{mm}^2$ SiPM through 1, 2, or 3 WLS fibers. With 3 fibers in the scintillator we would recover a factor 1.65, while putting a fourth fiber would add only another 10% of light, which is not sufficient to fully regain the light lost in the clear fibers which is needed to meet the efficiency and the time resolution values discussed in the following paragraph. Since the light loss is too high to bring the photodetector out of the iron, the SiPMs must be coupled to the WLS fibers inside the detector, at the end of the scintillator bars. Appropriate neutron shields are essential to guarantee a reasonable SiPM lifetime.

A systematic study has then been performed with the photodetectors directly coupled to the WLS fibers. The detection efficiency (ϵ) and the time resolution (σ_T) have been measured in the most critical points. Fig. 33 shows a typical time distribution while all the results are reported in Table 4. The goal is to have a detection efficiency $\epsilon > 95\%$ and, for the Time readout only, a time resolution $\sigma_T \geq 1\,\text{ns}$ (that would translate to a longitudinal coordinate resolution $\sigma_z \geq 20\,\text{cm}$). From Table 4 we see that, in order to have some safety margin, the minimum of fibers to be placed inside the scintillator is 3.

A radiation test have also been carried out at the Frascati Neutron Generator facility (ENEA laboratory). First results [7] show that radiation effects start from an integrated dose of $\simeq 10^{10}\,\text{n}/\text{cm}^2$ and remain rather stable up to a dose of $\simeq 7 \times 10^{10}\,\text{n}/\text{cm}^2$; in this range, the irradiated SiPMs continue to work, although with lower efficiency and higher dark rate.

7.2.2 Prototype

R&D achievements will be tested on a full scale prototype that is currently in preparation and that will be used to validate the simulation results. The prototype is composed by a full stack of iron with a segmentation which allows the study of different detector configurations. The active area is $60 \times 60\,\text{cm}^2$ for each gap. Scintillator slabs, full length WLS fibers and photodetectors will be located in light-tight boxes (one for each active layer) placed within the gaps. The prototype will be equipped with 8 active layers: 4 with Binary readout and 4 with Time readout. A beam test will be done at Fermilab using a muon/pion beam with momentum ranging from 1 GeV/c to 5 GeV/c. Besides the muon identification capability with different iron configurations, which is the main purpose of the beam test, detection efficiency and spatial resolution of the detector will also be measured.

7.3 Baseline Detector Design

Although the final detector design will be decided after the prototype test, a baseline layout can be preliminary derived by the R&D studies, the simulation results and the experience with the BABAR muon detector. Binary and Time readout have pros and cons from the performance point of view, but they both match the requirements for SuperB. Mechanically, the installation of the Binary readout, with orthogonal layers of scintillator, would be rather com-
Table 4: Summary of measurements for the Time and Binary readout. The few % lowering of the detection efficiency at 1.5 p.e. threshold is a dead time effect due to the high rate.
The last point requires heavy modifications to the support structures surrounding the Barrel Flux Return. Due to the increased weight a general reinforcement of the support elements has to be foreseen.

References

8 Electronics, Trigger, DAQ and Online

8.1 Overview of the Architecture

The architecture proposed for the SuperB [1] Electronics, Trigger, Data acquisition and Online systems (ETD) has evolved from the Babar architecture, thanks to the experience gained from running Babar [2], and building the LHC experiments [3], [4], [5]. The detector side of the system is synchronous and all sub-detector readouts are now triggered. This limits the number of links between the front-end electronics (FEE) and the readout modules (ROMs)—leading to good performance and easy commissioning of the experiment. In SuperB standard links like Ethernet are the default; custom hardware links are only used where necessary. The potential for high radiation levels makes it mandatory to design radiation-safe, on-detector electronics. The first-level hardware trigger uses standardized data streams from the sub-detectors and provides information to the fast control and timing system (FCTS) which is the centralised bandmaster of the system. The FCTS distributes the clock and the fast commands to all elements of the architecture and controls the readout of the events.

8.1.1 Trigger Strategy

The Babar and Belle [6] experiments both chose to use “open triggers” that preserved nearly 100% of the events of all topologies, and a very large fraction of $\tau^+\tau^-$ and ϕ events. This choice enabled very broad physics programs at both experiments, albeit at the cost of a large number of events that needed to be logged and reconstructed, since it was so difficult to reliably separate the desired signals from the ϕ and $\tau^+\tau^-$ background. The physics program envisioned for SuperB requires very high efficiencies for a wide variety of ϕ, $\tau^+\tau^-$, and ϕ events, and depends on continuing the
8.1 Overview of the Architecture

The trigger system consists of the following components:

1. **Level 1 (L1) Trigger**: A synchronous, fully pipelined L1 trigger receives continuous data streams from the detector independently of the event readout and delivers readout decisions with a fixed latency and time window. While we have yet to conduct detailed trigger studies, we expect the L1 trigger to be similar to the BABAR L1 trigger, operating on reduced-data streams from the drift chamber and the calorimeter. We will study the possibilities of improving the L1 trigger performance by including SVT information, taking advantage of larger FPGAs, faster drift chamber sampling, the faster forward calorimeter, and improvements to the trigger readout granularity of the EMC.

2. **High Level Triggers (HLT) — Level 3 (L3) and Level 4 (L4)**: The L3 trigger is a software filter that runs on a commodity computer farm and bases its decisions on specialized, fast-reconstruction of complete events. An additional “Level 4” filter may be implemented to reduce the volume of permanently recorded data if needed. Decisions by L4 would be based on partial or full reconstruction of complete events. Depending on the worst-case performance guarantees of the reconstruction algorithms, it might become necessary to decouple this filter from the near-realtime requirements of L3—hence, its designation as a separate stage.

Figure 34: Overview of the ETD and Online global architecture

While at this time we do not foresee a “Level 2” trigger that acts on partial event information in the data path, the data acquisition system architecture would allow the addition of such a trigger stage at a later time, hence the nomenclature.

SuperB Detector Progress Report
8.1.2 Trigger Rates and Event Size Estimation

The present L1-accept rate design standard is 150 kHz. It has been increased from the SuperB CDR [1] design of 100 kHz to allow more flexibility and add headroom both to accommodate the possibility of higher backgrounds than designed (e.g., during machine commissioning), and the possibility that the machine might exceed its initial design luminosity of 10^{36} cm$^{-2}$ sec$^{-1}$.

The event size estimates still have large uncertainties. Raw event sizes (between front-end electronics and ROMs) are understood well enough to determine the number of fibres required. However, neither the algorithms that will be employed in the ROMs for data size reduction (such as zero suppression or feature extraction) nor their specific performance for event size reduction are yet known. Thus, while the 75 kbytes event size extrapolated from BAAR for the CDR remains our best estimate, the event size could be significantly larger due to new detector components such as Layer 0 of the SVT and/or the forward calorimeter. In this document we will use 150 kHz L1-accept rate and 75 kbytes per event as the baseline.

With the prospect of future luminosity upgrades up to 4 times the initial design luminosity, we also must understand the system upgrade path, including which elements need to be designed upfront to facilitate such an upgrade, which can be deferred until a later time, and, ultimately, what the associated costs would be.

8.1.3 Dead Time and Buffer Queue Depth Considerations

The readout system is designed to handle an average rate of 150 kHz and to absorb the expected instantaneous rates, both without incurring dead time\(^4\) of more than 1% under normal operating conditions. The average rate requirement determines the overall system bandwidth; the instantaneous trigger rate requirement affects the FCTS (Fast Control and Timing System), the data extraction capabilities of the front-end electronics, and the depth of the de-randomization buffers. The minimum time interval between bunch crossings at design luminosity is about 2.1 ns—so short in comparison to detector data collection times that we assume “continuous beams” for the purposes of trigger and FCTS design. Therefore, the burst handling capabilities (minimum time between triggers and maximum burst length) to achieve the dead time goal are dominated by the capability of the L1 trigger to separate events in time and by the ability of the trigger and readout systems to handle events that are partially overlapping in space or time (pile-up, accidents, etc.). Detailed detector and trigger studies are needed to determine these requirements.

8.2 Electronics, Trigger and DAQ

The Electronics, Trigger and DAQ (ETD) system includes all the hardware elements in the architecture, including FCTS, sub-detector-specific and common parts (CFEE) of the front-end electronics (FEE) for data readout and control, the Level 1 hardware trigger, the Readout Module boards (ROMs), the Experiment Control System (ECS), and the various links that interconnect these components.

The general design approach is to standardize components across the system as much as possible, to use mezzanine boards to isolate sub-system-specific functions differing from the standard design, and to use commercially available common off-the-shelf (COTS) components where viable.

We will now describe the main components of the ETD in more detail.

8.2.1 Fast Control and Timing System

The Fast Control and Timing System (FCTS, Fig. 35) manages all elements linked to clock, trigger, and event readout, and is responsible for handling of average or instantaneous L1 trigger rates.

4Dead time is generated and managed centrally by the FCTS which will drop valid L1 trigger requests that would not fit into the readout system’s envelope for handling of average or instantaneous L1 trigger rates.
This page contains no comments
Event Handling: The FCTS generates event identifiers, manages the event routing, and distributes event routing information to the ROMs. It also keeps a trace of all event-linked data that needs to be included with the readout data.

The FCTS crate includes as many FCTM boards as required to cover all partitions. One FCTM will be dedicated to the unused sub-systems in order to provide them with the clock and the minimum necessary commands.

Two dedicated switches are required in order to be able to partition the system into independent sub-systems or groups of sub-systems. One switch distributes the clock and commands to the front-end boards, the other collects throttling requests from the readout electronics or the ECS. These switches can be implemented on dedicated boards, connected with the FCTMs, and need to receive the clock. To reduce the number of connections between ROM crates and the global throttle switch board, throttle commands could be combined at the ROM crate level before sending them to the global switch.

Instantaneous throttling of the data acquisition by directly inhibiting the raw L1 trigger from the front-end electronics is not possible because the induced latency is too long. Instead, models of the front-ends and the L1 event buffer queues will be emulated in the FCTM to instantaneously reduce the trigger rate if data volume exceeds the front-end capacity.

The FCTM also manages the distribution of events to the HLT farm for event building, deciding the destination farm node for every event. There are many possible implementations of the event building network protocol and the routing of events based on availability of HLT farm machines; so at this point we can provide only a high-level description. We strongly prefer to use the FCTS to distribute event routing information to the ROMs because it is simple and provides natural synchronization. Management of event destinations can be implemented in FCTM firmware and/or software as can functions such as bandwidth management for the event building network and protocols to manage the event distribution based on the availability of farm servers.

“Continuation events” to deal with pile-up could either be merged in the ROMs or in the high-level trigger farm, but we strongly prefer to merge them in the ROMs. Merging them in the trigger farm would complicate the event builder and require the FCTS to maintain event state and adjust the event routing to send all parts of a continuation event to the same HLT farm node.

8.2.2 Clock, Control and Data Links

Designing and validating the different serial links required for SuperB (for data transmission, timing, and control commands distribution and read-out) will require substantial effort during the TDR phase. Because of fixed latency and low jitter constraints, simple solutions relying on off-the-shelf electronics components must be thoroughly tested to validate them for use in clock and control links. Moreover, because radiation levels on the detector side are expected to be high, R&D will be necessary to qualify the selected chip-sets for radiation robustness. Since requirements for the various link types differ, technical solutions for different link types may also differ.

The links are used to distribute the frequency-divided machine clock (running at 56 MHz) and fast control signals such as trigger pulses, bunch crossing, and event IDs or other qualifiers to all components of the ETD system. Copper wires are used for short haul data transmission (< 1m), while optical fibres are used for medium and long haul. To preserve timing information, suitable commercial components will be chosen so that the latency of transmitted data and the phase of the clock recovered from the serial stream do not change with power cycles, resets, and loss-of-lock. Encoding and/or scrambling techniques will be used to minimize the jitter on the recovered clock. The same link architecture is also suitable for transmitting regular data instead of fast controls, or a combination of both.

Link types can be divided into two classes:
A-Type: The A-type links are homogeneous links with both ends off-detector. Given the absence of radiation, they might be implemented with Serializer-Deserializers (SerDes) embedded in FPGAs (Field Programmable Gate Arrays). Logic in the FPGA fabric will be used to implement fixed latency links and to encode/decode fast control signals. A-Type links are used to connect the FCTS system to the DAQ crate control and to the Global Level 1 Trigger. A-Type links run at approximately 2.2 Gbits/s.

B-Type: The B-type hybrid links have one end on-detector and the other end off-detector. The on-detector side might be implemented with off-the-shelf radiation-tolerant components—the off-detector end might still be implemented with FPGA-embedded SerDes. B-Type links connect the FCTS crate to the FEE and the FEE to ROMs. The B-Type link speed might be limited by the off-the-shelf SerDes performance, but is expected to be at least 1 Gbit/s for the FCTS to FEE link and about 2 Gbits/s for the FEE to ROM link.

All links can be implemented as plug-in boards or mezzanines, (1) decoupling the development of the user logic from the high-speed link design, (2) simplifying the user board layout, and (3) allowing an easy link upgrade without affecting the host boards. Mezzanine specifications and form-factors will likely be different for A-Type and B-Type links, but they will be designed to share a common interface to the host board to the maximum possible extent.

8.2.3 Common Front-End Electronics

Common Front-End Electronics (CFEE) designs and components allow us to exploit the commonalities between the sub-detector electronics and avoid separate design and implementation of common functions for each sub-detector.

In our opinion, the separate functions required to drive the FEE should be implemented in dedicated independent elements. These elements will be mezzanines or circuits directly mounted on the front-end modules (which act as carrier boards) and will be standardized across the sub-systems as much as possible. For instance, as shown in Fig. 37, one mezzanine can be used for FCTS signal and command decoding, and one for ECS management. To reduce the number of links, it may be possible to decode the FCTS and ECS signals on one mezzanine and then distribute them to the neighbouring boards.

A common dedicated control circuitry inside a radiation-tolerant FPGA may also drive the L1 buffers. It would handle the L1 accept commands and provide the signals necessary to manage the data transfers between latency buffers, derandomizer buffers and the fast multiplexers feeding the optical link serializers. If required by the system design, it would also provide logic for special treatment of pile-up events and/or extending the readout window back in time after a Bhabha event has been rejected.

The latency buffers can be implemented either in the same FPGA or directly on the carrier boards. One such circuit can drive numerous data links in parallel, thus reducing the amount of electronics on the front-end.

One intriguing, possible advantage of this approach is that analog L1 buffers might be implemented in an ASIC, though the analog output of the ASIC then must be able to drive an internal or external ADC at a 56 MHz rate in order to keep synchronization with the rest of the system. It may be possible to relax this rate constraint by running slower ADCs in parallel.

Serializers and optical link drivers will also reside on carrier boards, mainly for mechanical
and thermal reasons. Fig. 37 shows a possible implementation of the L1 buffers, their control electronics (in a dedicated FPGA), and their outputs to the optical readout links.

All (rad-tolerant) FPGAs in the FEE have to be reprogrammable without dismounting a board. This could be done through dedicated front panel connectors, which might be linked to numerous FPGAs, but it would be preferable if the reprogramming could be done through the ECS without any manual intervention on the detector side.

8.2.4 Readout Module

The Readout Modules (ROM, Fig. 38) receive event fragments from the sub-detectors' front-end electronics, tag them with front-end identifiers and absolute time-stamps, buffer them in de-randomizing memories, perform processing (still to be defined) on the fragment data, and eventually inject the formatted fragment buffers into the event builder and HLT farm. Connected to the front-end electronics via optical fibres, they will be located in an easily accessible, low radiation area.

A modular approach will maximize standardization across the system to simplify development and keep costs low — different sub-detector requirements can then be accommodated by using sub-detector-specific “personality modules”.

On the ROM boards, signals from optical receivers mounted on mezzanine cards will be routed to the de-serializers (in commercial FPGAs) where data processing can take place. Special requirements from the sub-detector systems will be accommodated by custom-built mezzanines mounted on common carriers. One of the mezzanine sites on the carrier will host an interface to the PCTS to receive global timing and trigger information. The carrier itself will host memory buffers and 1 Gbit/s or 10 Gbits/s links to the event building network.

A baseline of 8 optical fibres per card currently seems like a good compromise between keeping the number of ROM boards low and adding to their complexity. This density is sufficient so that there needs to be only one ROM crate per sub-detector, and corresponds nicely to the envisaged PCTS partitioning.

8.2.5 Experiment Control System

The complete SuperB experiment (power supplies, front-end, DAQ, etc.) must be controlled by an Experiment Control System (ECS). As shown in Fig. 34, the ECS is responsible both for controlling the experiment and for monitoring its functioning.

Configuring the Front-ends: Many front-end parameters must be initialized before the system can work correctly. The number of parameters per channel can range from a few to large per-channel lookup tables. The ECS may also need to read back parameters from registers in the front-end hardware to check the status or verify that the contents have not changed. For a fast detector configuration and recovery turnaround in factory mode, it is critical to not have bottlenecks either in the ECS itself, or in the ECS‘ access to the front-end hardware. If technically feasible and affordable, front-end electronics on or near the detector should be shielded or engineered to avoid frequent parameter reloads due to radiation-induced single event upsets—reconfiguring through the ECS should only be considered as a last resort.
Calibration: Calibration runs require extended functionality of the ECS. In a typical calibration run, after loading calibration parameters, event data collected with these parameters must be sent through the DAQ system and analyzed. Then the ECS must load the parameters for the next calibration cycle into the front-ends and repeat.

Testing the FEE: The ECS may also be used to remotely test all FEE electronics modules using dedicated software. This obviates the need for independent self-test capability for all modules.

Monitoring the Experiment: The ECS continuously monitors the entire experiment to insure that it functions properly. Some examples include (1) independent spying on event data to verify data quality, (2) monitoring the power supplies (voltage, current limits, etc.), and (3) monitoring the temperature of power supplies, crates, and modules. Support for monitoring the FEE modules themselves must be built into the FEE hardware so that the ECS can be informed about FEE failures. The ECS also acts as a first line of defense in protecting the experiment from a variety of hazards. In addition, an independent, hardware-based detector safety system (part of the Detector Control System, see 8.3.6) must protect the experiment against equipment damage in case the software-based ECS is not operating correctly.

The specific requirements that each of the sub-systems makes on ECS bandwidth and functionality must be determined (or at least estimated) as early as possible so that the ECS can be designed to incorporate them. Development of calibration, test, and monitoring routines must be considered an integral part of sub-system development, as it requires detailed knowledge about sub-system internals.

Possible ECS Implementation: The field bus used for the ECS has to be radiation tolerant on the detector side and provide very high reliability. Such a bus has been designed for the LHCb experiment: it is called SPECS (Serial Protocol for Experiment Control System) [7]. It is a bidirectional 10 Mbits/s bus that runs over standard Ethernet Cat5+ cable and provides all possible facilities for ECS (like JTAG (Joint Test Action Group) and I2C (Inter IC)) on a small mezzanine. It could be easily adapted to the SuperB requirements. Though SPECS was initially based on PCI boards, it is currently being translated to an Ethernet-based system, as part of an LHCb upgrade, also integrating all the functionalities for the out-of-detector elements. For the electronics located far from the detector, Ethernet will be used for ECS communication.

8.2.6 Level 1 Hardware Trigger

The current baseline for the L1 trigger is to re-implement the Babar L1 trigger with state-of-the-art technology. It would be a synchronous machine running at 56 MHz (or multiples of 56 MHz) that processes primitives produced by dedicated electronics located on the front-end boards or other dedicated boards of the respective sub-detector. The raw L1 decisions are sent to the FCTM boards which applies a throttle if necessary and then broadcasts them to the whole experiment. The standard chosen for the crates would most likely be either ATCA (Advanced Telecommunications Computing Architecture) for the crates and the backplanes, or a fully custom architecture.
The main elements of the L1 trigger are shown in Fig. 39 (see [8] for detailed descriptions of the BaBar trigger components):

Drift chamber trigger (DCT): The DCT consists of a track segment finder (TSF), a binary link tracker (BLT) and a p_t discriminator (PTD).

Electromagnetic Calorimeter Trigger (EMT): The EMT processes the trigger output from the calorimeter to find clusters.

Global Trigger (GLT): The GLT processor combines the information from DCT and EMT (and possibly other inputs such as an SVT trigger or a Bhabha veto) and forms a final trigger decision that is sent to the FCTS.

We will study the applicability of this baseline design at SuperB luminosities and backgrounds, and will investigate improvements, such as adding a Bhabha veto or using SVT information in the L1 trigger. We will also study whether faster sampling of the DCH, the new fast forward calorimeter, and a shortened shaping time of the barrel EMC will allow the trigger event time precision to be improved, perhaps enabling a reduction in readout window and raw event size. The L1 trigger may also be improved using larger FPGAs (e.g. by implementing tracking or clustering algorithm improvements, or by exploiting better readout granularity in the EMC.

L1 Trigger Latency: The BaBar L1 trigger had 12 µs latency. However, since the size and cost of the L1 data buffers in the sub-detectors scale directly with trigger latency, it should be substantially reduced, if possible. Since L1 trigger latencies of the much larger, more complex, ATLAS, CMS and LHCb experiments range between 2 and 4 µs, it seems likely that we can achieve a latency of 4 µs or less. More detailed engineering studies will be required to validate this estimate.

8.3 Online System

Figure 40: High-level logical view of the Online System

The Online system is responsible for reading out the ROM, building complete events, filtering events according to their content (High Level Triggers), and archiving the accepted events for further physics analysis (Data Logging). It is also responsible for continuous monitoring of the acquired data to understand detector performance and detect detector problems (Data Quality Monitoring). The Detector Control System (DCS) monitors and controls the detector and its environment.

Assuming a L1 trigger rate of 150 kHz and an event size of 75 kbytes, the input bandwidth of the Online system must be about 12 Gbytes/s, corresponding to about 120 Gbits/s with overhead. It seems prudent to retain an additional safety factor of ~2, given the event size uncertainty and the immaturity of the overall system design. Thus, we will take 250 Gbits/s as the baseline for the Online system input bandwidth.

Assuming that the HLT accepts a cross-section of about 25 nb leads to an expected event rate of 25 kHz at a luminosity of
10⁻⁶ cm⁻²sec⁻¹, or a logging data rate of \(\sim 1.9 \text{ Gbytes/s} \).

The main elements of the Online system (Fig. 40) are described in the following sections.

8.3.1 ROM Readout and Event Building

The ROMs read out event fragments in parallel from sub-detector front-end electronics—buffering the fragments in deep de-randomizing memories. The event-related information is then transferred into the ROM memories, and sent over a network to an event buffer in one of the machines of the HLT farm. This collection task, called event building, can be performed in parallel for multiple events, thanks to the depth of the ROM memories and bandwidth of the event building network switch (preferably non-blocking). Because of this inherent parallelism, the building rate can be scaled up as needed (up to the bandwidth limit of the event building network). We expect to use Ethernet as the basic technology of the event builder network, using 1 Gbits/s and 10 Gbits/s links.

8.3.2 High Level Trigger Farm

The HLT farm needs to provide sufficient aggregate network bandwidth and CPU resources to handle the full Level 1 trigger rate on its input side. The Level 3 trigger algorithms should operate and log data entirely free of event time ordering constraints and be able to take full advantage of modern multi-core CPUs. Extrapolating from BABAR, we expect 10 ms core time per event to be more than adequate to implement a software L3 filter, using specialized fast reconstruction algorithms. With such a filter, an output cross-section of 25 nb should be achievable.

To further reduce the amount of permanently stored data, an additional filter stage (L4) could be added that acts only on events accepted by the L3 filter. This L4 stage could be an equivalent (or extension) of the BABAR offline physics filter—rejecting events based either on partial or full event reconstruction. If the worst-case behavior of the L4 reconstruction code can be well controlled, it could be run in near real-time as part of, or directly after, the L3 stage. Otherwise, it may be necessary to use deep buffering to decouple the L4 filter from the near real-time performance requirements imposed on the L3 stage. The discussion in the SuperB CDR [1] about risks and benefits of a L4 filter still applies.

8.3.3 Data Logging

The output of the HLT is logged to disk storage. We assume at least a few Tbytes of usable space per farm node, implemented either as directly attached low-cost disks in a redundant (RAID) configuration, or as a storage system connected through a network or SAN. We do not expect to aggregate data from multiple farm nodes into larger files. Instead, the individual files from the farm nodes will be maintained in the downstream system and the bookkeeping system and data handling procedures will have to deal with non-monotonic runs and missing run contribution files. A switched Gigabit Ethernet network separate from the event builder network is used to transfer data asynchronously to archival storage and/or near-online farms for further processing. It is not yet decided where such facilities will be located, but network connectivity with adequate bandwidth and reliability will need to be provided. Enough local storage must be available to the HLT farm to allow data buffering for the expected periods of link down-time.

While the format for the raw data has yet to be determined, many of the basic requirements are clear, such as efficient sequential writing, compact representation of the data, and the freedom to tune file sizes to optimize storage system performance.

8.3.4 Event Data Quality Monitoring and Display

Event data quality monitoring is based on quantities calculated by the L3 (and possibly L4) trigger, as well as quantities calculated by a fast reconstruction pass on a subset of the data.
8 Electronics, Trigger, DAQ and Online

8.3.5 Run Control System

The control and monitor of the experiment is performed by the Run Control System (RCS), providing a single point of entry to operate and monitor the entire experiment. It is a collection of software and hardware modules that handle the two main functions of this component: controlling, configuring, and monitoring the whole Online system, and providing its user interface. The RCS interacts both with the Experiment Control System (ECS) and with the Detector Control System (DCS). We expect the RCS to utilize modern web technologies.

8.3.6 Detector Control System

The Detector Control System (DCS) is responsible for ensuring detector safety, controlling the detector and detector support system, and monitoring and recording detector and environmental conditions.

Efficient detector operations in factory mode require high levels of automation and automatic recovery from problems. The DCS plays a key role in maintaining high operational efficiency, and tight integration with the Run Control System is highly desirable.

Low-level components and interlocks responsible for detector safety (Detector Safety System, DSS) will typically be implemented as simple circuits or with programmable logic controllers (PLCs).

The software component will be built on top of a toolkit that provides the interface to whatever industrial bases, sensors, and actuators may be used. It must provide a graphical user interface for the operator, have facilities to generate alerts automatically, and have an archiving system to record the relevant detector information. It must also provide software interfaces for programmatic control of the detector.

We expect to be able to use existing commercial products and controls frameworks developed by the CERN LHC experiments.

8.3.7 Other Components

Electronic Logbook: A web-based logbook, integrated with all major Online components, allows operators to keep an ongoing log of the experiment’s status, activities and changes.

Databases: Online databases such as configuration, conditions, and ambient databases are needed to track, respectively, the intended detector configuration, calibrations, and actual state and time-series information from the DCS.

Configuration Management: The configuration management system defines all hardware and software configuration parameters, and records them in a configuration database.

Performance Monitoring: The performance monitoring system monitors all components of the Online.

Software Release Management: Strict software release management is required, as is a tracking system that records the software version (including any patches) that was running at a given time in any part of the ETD/Online system. Release management must cover FPGAs and other firmware as well as software.

Computing Infrastructure Reliability: The Online computing infrastructure (including the specialized and general-purpose networks, file, database and application servers, operator consoles, and other workstations) must be designed to provide high availability, while being self-contained (sufficiently isolated and provided with firewalls) to minimize external dependencies and downtime.

8.3.8 Software Infrastructure

The Online system is basically a distributed system built with commodity hardware compo-
8.4 Front-End Electronics

8.4.1 SVT Electronics

The SVT electronics shown in Fig. 41 is designed to take advantage, where possible, of the data-push characteristics of the front-end chips. The time resolution of the detector is dominated by the minimal time resolution of the FSSR2 chip, which is 132 ns. Events are built from packets of three minimal time slices (396 ns event time window). The event chain in layer 0 starts from a half-module holding two sets of pixel chips (2 readout sections, ROS). Data are transferred on copper wires to boards located a few meters away from the interaction region where local buffers will store the read hits. As discussed in the SVT chapter, for layer 0, the data rate is dominated by the background. The bandwidth needed is about 16 Gbits/s/ROS. This large bandwidth is the main reason to store hits close to the detector and transfer only hits from triggered events.

For events accepted by the L1 trigger, the bandwidth requirement is only 0.85 Gbits/s and data from each ROS can be transferred on optical links (1 Gbit/s) to the front-end boards (FEB) and then to ROMs through the standard 2 Gbits/s optical readout links. Layers 1-5 are read out continuously with the hits being sent to the front-end boards on 1 Gbit/s optical links. On the FEBs, hits are sorted in time and formatted to reduce event size (timestamp stripping). Hits of triggered events are then selected and forwarded to the ROMs on 2 Gbits/s standard links.

Occupancies and rates on layers 3-5 should be low enough to make them suitable for fast track searching so that SVT information could be used in the L1 trigger. The SVT could provide the number of tracks found, the number of tracks not originating from the interaction region, and the presence of back-to-back events in the φ coordinate. A possible option for SVT participation to the L1 trigger processing board is to require two L1 trigger processing boards (each one linked to the FEBs of layers 3-5) with synchronous optical links.

In total, the SVT electronics requires 58 FEBs and 58 ROMs, 58 optical links at 2 Gbits/s, 308 links at 1 Gbit/s (radiation hard) and, optionally, 2 L1 trigger processing boards and about 40 links at 1.25 Gbits/s for L1 trigger processing.

8.4.2 DCH Electronics:

The design is still in a very early stage, so we only provide a baseline description of the drift chamber front-end electronics. It does not include additional front-end features currently under study (such as a cluster counting capability).

The DCH provides charged particle tracking, E/E/θ, φ, and trigger information. The front-end electronics measures the drift time of the first
electron and the total charge collected on the sense wires, and generates the information to be sent to the L1 trigger.

The DCH front-end chain can be divided into three different blocks:

Very Front End Boards (VFEB): The VFEBs contain HV distribution and blocking capacitors, protection networks and preamplifiers. They could also host discriminators. The VFEBs are located on the (backward) chamber end-plate to maximize the S/N ratio.

Data Conversion and Trigger Pattern Extraction: Data conversion incorporates both TDCs (1 ns resolution, 10 bits dynamic range) and continuous sampling ADCs (6 bits dynamic range). Trigger data contain the status of the discriminated channels, sampled at about 7 MHz (compared to 3.7 MHz in B4A9). This section of the chain can be located either on the end-plate (where power dissipation, radiation environment, and material budget are issues) or in external crates (where either micro-coax or twisted cables must be used to carry out the preamplifier signals).

Readout Modules: The ROMs collect the data from the DCH FEE and send zero-suppressed data to DAQ and trigger.

The number of links required for data transfer to the DAQ system can be estimated based on the following assumptions: 150 kHz L1 trigger rate, 10k channels, 15% chamber occupancy in a 1 µs time window, and 32 bytes per channel. At a data transfer speed of 2 Gbits/s per link, about 40 links are needed. 56 synchronous 1.25 Gbits/s links are required to transmit the trigger data sampled at 7 MHz. The topology of the electronics suggests that the number of ECS and FCTS links should be the same as the number of readout links.

8.4.3 PID Electronics:

Forward PID Option: There are currently two detector options being considered for the forward PID.

The first option is to measure the time of flight (TOF) of particles from the interaction point to the PID detector. Two implementations are under consideration—a pixel detector which would lead to a large number of read-out channels (~7,200), or a DIRC-like detector with fused silica bars (plates) which would require a much smaller (~192) channel count. Both implementations make use of fast Micro Channel Plate PMTs (MCP/PMs) and have to provide a measurement of the hit time with a precision of ~40 ps. The readout would probably use fast analog memories which, as of today, are the most plausible solution for a picosecond time measurement in this environment. To achieve...
8.4 Front-End Electronics

This time resolution, the clock distribution will have to be very carefully designed and will likely require direct use of the machine clock at the beam crossing frequency.

A second option is a Focusing Aerogel Cherenkov detector. Though the timing requirements are less severe, its ~415,000 channels would also have to come from MCP-PMTs, since standard multi-anode PMTs cannot be used in the high magnetic field where it resides. Since the time precision needed is similar to that of the barrel, the same type of electronics could be used. At least 50 links would be the minimum necessary for the data readout, while the ECS and FCTS would require a maximum of about 50 additional links.

Barrel PID: The barrel PID electronics must provide the measurement of the arrival time of the photons produced in the fused silica bars with a precision of about 100 ps rms. The SuperB detector baseline is a focusing DIRC, using multi-anode photo multipliers. This optical design (smaller camera volume, and materials) reduces the background sensitivity by at least one order of magnitude compared to BABAR thus reducing the rate requirements for the front-end electronics.

The baseline design is implemented with 16-channel TDC ASICs—offering the required precision of 100 ps rms. A 12-bit ADC can provide an amplitude measurement, at least for calibration, monitoring, and survey, which is transmitted with the hit time. A 16-channel front-end analog ASIC must be designed to sample and discriminate the analog signal. Both ASICs would be connected to a radiation-tolerant FPGA which would handle the hit readout sequence and push data into the L1 trigger latency buffers.

This front-end electronics must all sit on the MAPMT base, where space is very limited and cooling is difficult. However, crates concentrating front-end data and driving the fast optical links can be located outside the detector in a more convenient place where space is available. They would be connected to the front-end through standard commercial cables (like Cat 5 Ethernet cables). The readout mezzanines would be implemented there, as well as the FCTS and ECS mezzanines from where signals would be forwarded to the front-end electronics through the same cables.

The system would be naturally divided into 12 sectors. Using the baseline camera with 36,864 channels, 150kHz channel hit rate, 100kHz channel hit rate, 32 data bits/hit, and 2 Gbps/s link rate, the readout link occupancy should be only ~15%, thus offering a pleasant safety margin. A camera using another model of PMTs with one-half the number of channels is also being studied.

An alternative readout option would be to use analog memories instead of TDCs to perform both time and amplitude measurements. This option retains more information on the hit signals but would likely be more expensive. Its advantages and disadvantages are still under study.

8.4.4 EMC Electronics:

Two options have been considered for the EMC system design—a BABB-like push architecture where all calorimeter data are sent over synchronous optical 1 Gbit/s links to L1 latency buffers residing in the trigger system, or a “triggered” pull architecture where the trigger system receives only sums of crystals (via syn-

Figure 43: PID Electronics
Following the Bhabha detector design, a push architecture with a full granularity readout scheme was first explored. In this approach, the information from 4 channels is grouped, using copper serial links, reaching an aggregate rate of 0.832 Gbits/s per link to use up most of the synchronous optical link's 1 Gbit/s bandwidth. A total of 1125 links are required. The main advantage of this architecture is the flexibility of the trigger algorithm that can be implemented off-detector using state-of-the-art FPGAs without constraining their radiation resistance. The main drawback is the large cost due to the huge number of links.

The number of links can be reduced by summing channels together on the detector side, and only sending the sums to the trigger. The natural granularity of the forward detector is a module which is composed of 25 crystals. In this case, data coming from 25 crystals is summed together, forming a word of 16 bits. Then the sums coming from 4 modules are aggregated together to produce a payload of 0.89 Gbits/s. In this case, the number of synchronous links toward the trigger is only 45. The same number of links would be sufficient to send the full detector data with a 560 ns trigger window. This architecture limits the trigger granularity, and implies more complex electronics on the detector side, but reduces the number of links by a large factor (from 1125 down to 90). However, it cannot be excluded that a faster chipset will appear on the market which could significantly reduce this implied benefit.

Forward Calorimeter The 4500 crystals are read out with PIN or APD photodiodes. A charge preamplifier translates the charge into voltage and the shaper uses a 100 ns shaping time to provide a pulse with a FWHM of 240 ns. The shaped signal is amplified with two gains (x1 and x64). At the end of the analog chain, an auto-range circuit decides which gain will be digitized by a 12 bit pipeline ADC running at 14 MHz. The 12 bits of the ADC plus one bit for the range thus cover the full scale from 10 MeV to 10 GeV with a resolution better than 1%. A gain is set during calibration using a programmable gain amplifier in order to optimize the scale used during calibration with a neutron-activated liquid-source system providing gamma photons around 6 MeV.

Barrel Calorimeter The EMC barrel reuses the 5760 crystals and PIN diodes from Bhabha, with, however, the shaping time reduced from 1 µs to 500 µs and the sampling rate doubled from 3.5 MHz to 7 MHz. The same considerations about serial links discussed above for the forward EMC apply to the barrel EMC. If full granularity data were pushed synchronously to the trigger, about 520 optical links would be necessary.

The number of synchronous trigger links can be drastically reduced by performing sums of

This page contains no comments
4x3 cells on the detector side, so that 6 such energy sums could be continuously transmitted through a single optical serial link. This permits a reduction in the number of trigger links so as to match the topology of the calorimeter electronics boxes, which are split into 40 φ sectors on both sides of the detector. Therefore, the total number of links would be 80 both for the trigger and the data readout toward the ROMs, including a substantial safety margin (> 1.5).

8.4.5 IFR Electronics:

The IFR is equipped with plastic scintillators coupled to wavelength shifting fibres. Although different options have been explored, it is currently assumed that single photon counting devices (SiPM) will be located "inside" the iron, as close as possible to the scintillating assemblies. Each SiPM will be biased and read out through a single coaxial cable.

A schematic diagram of the IFR readout electronics is shown in Fig. 45. The first stage of the readout chain is based on the IFR ABC boards which provide (for 32 channels each):

- Amplification, presently based upon off-the-shelf components (COTS).
- Individually programmable bias voltages for the SiPMs.
- Comparators with individually programmable thresholds, presently based on COTS.

To minimize the length of the coaxial cables from the SiPMs to the IFR ABC boards, these boards need to be placed as close to the iron yoke as possible. The digital outputs of the IFR ABC boards will then be processed in different ways for the IFR barrel and end-caps.

IFR Barrel

The barrel scintillation elements are mounted parallel to the beam axis. The time of arrival of pulses from both ends of the scintillating elements must be recorded so that the z-position of particle hits can be determined during reconstruction. The signals are read out with IFR TDC 64-channel timing digitizer boards.

The total TDC channel count estimate for the barrel is 14,400, which comes from the 3600 scintillating assemblies in the barrel that are read out at both ends with 2 comparators (with different thresholds) per end to improve timing (and position) resolution.

IFR End-caps

The signals from the scintillators in the IFR end-caps (which are positioned vertically and horizontally) are read out with IFR BiRO 128 channel "Binary Readout" boards, which sample the status of the input lines and update a circular memory buffer from which data are extracted upon trigger request.

The total channel count estimate for the end-caps is 9,600 BiRO channels coming from the two end caps, each with 2,400 scintillating assemblies in X, and 2,400 scintillating assemblies in Y read out into a single comparator per channel.

The IFR TDC and IFR BiRO digitizers should be located as closely as possible to the IFR ABC boards to minimize the cost of the interconnecting cables, preferably in an area of low radiation flux. In this case, commercial TDC ASICs could be used in the design. Alternatively, radiation-tolerant TDCs could be used closer to the detector. The FPGAs used in the digitizers should be protected against radiation effects by architecture and by firmware design.
The output streams from the IFR TDC and IFR BiRO boards go through custom “data concentrators” to merge the data coming from a number of digitizers, and send the resulting output data to the ROMs via the standard optical readout links.

In total, 225 IFR TDC boards (12 crates) and 75 IFR BiRO boards (4 crates) are needed. The total number of links to the ROMs is presently estimated to be: 24 for the barrel (2 links per digitizer crate), and 16 for the end-caps (4 links per digitizer crate).

To optimize the electronics topology, the number of ECS and FCTS links should match the number of readout links.

8.5 R&D

For the overall EDT/Online system, substantial R&D is needed to better understand the global system requirements, develop solutions, and probe the possible upgrade paths to handle luminosities of up to \(4 \times 10^{36} \text{cm}^{-2}\text{sec}^{-1}\) during the lifetime of the experiment.

Data Links: The data links for SuperB require R&D in the following areas: (1) studying jitter related issues and filtering by means of jitter cleaners; (2) coding patterns for effective error detection and correction; (3) radiation qualification of link components; and (4) performance studies of the serializers/deserializers embedded in the new generation of FPGAs (Virtex6, Xilinx, etc.)

Readout Module: Readout Module R&D includes investigation of 10Gb/s Ethernet technology, and detailed studies of the I/O subsystem on the ROM boards. The possibility of implementing the ROM functions in COTS computers by developing suitable PCIe boards (such as optical link boards for FCTS and FEE links, or personality cards to implement sub-detector-specific functions) should also be investigated.

Event Builder and HLT Farm: The main R&D topics for the Event Builder and HLT Farm are: (1) the applicability of existing tools and frameworks for constructing the event builder; (2) the HLT farm framework; and (3), event building protocols and how they map onto network hardware.

Software Infrastructure: To provide the most efficient use of resources, it is important to investigate how much of the software infrastructure, frameworks and code implementation can be shared with Offline computing. This requires us to determine the level of reliability-engineering required in such a shared approach. We also must develop frameworks to take advantage of multi-core CPUs.
8.6 Conclusions

The architecture of the ETD system for SuperB is optimized for simplicity and reliability at the lowest possible cost. It builds on substantial in-depth experience with the BaBar experiment, as well as more recent developments derived from building and commissioning the LHC experiments. The proposed system is simple and safe. Trigger and data readout are fully synchronous—allowing them to be easily understood and commissioned. Safety margins are specifically included in all designs to deal with uncertainties in backgrounds and radiation levels. Event readout and event building are centrally supervised by a FCTS system which continuously collects all the information necessary to optimize the trigger rate. The hardware trigger design philosophy is similar to that of BaBar but with better efficiency and smaller latency. The event size remains modest.

The Online design philosophy is similar—leveraging existing experience, technology and toolkits developed by BaBar, the LHC experiments, and commercial-of-the-shelf computing and networking components leading to a simple and operationally efficient system to serve the needs of SuperB factory-mode data taking.

References

SuperB Detector Progress Report
9 Software and Computing

The computing models of the BaBar and Belle experiments have proven to be quite successful for a flavor factory in the $L = 10^{30}$ cm$^{-2}$s$^{-1}$ luminosity regime. A similar computing model can also work for a super flavor factory at a luminosity of $L = 10^{34}$ cm$^{-2}$s$^{-1}$. Data volumes will be much larger, comparable in fact to the ones expected for the first running periods of the ATLAS and CMS experiments at the LHC, but predictable progress in computing industry will provide much of the performance increase needed to cope with them. In addition, effective exploitation of computing resources on the Grid, that has become well established in the LHC era, will enable SuperB to access a much larger set of resources than was possible to BaBar.

To illustrate the size of the computing problem and how the SuperB computing group envisage to attack it, the first part of this section contains an overview of the current SuperB-inspired computing baseline model, with an estimate of the extrapolated computing requirements, followed by a description of the current development and implementation timeline. In the current view, the design phase of the SuperB computing model is planned to start with a dedicated R&D program in the second half of 2010 and to finish with the completion of the Computing TDR by the end of 2011.

In the meanwhile, the main effort of the computing group has been devoted to the development and support of the simulation software tools and the computing production infrastructure needed for carrying out the detector design and performance evaluation studies for the Detector TDR. Quite sophisticated and extended detector and physics studies can now be performed thanks to

- the development of a detailed Geant-based Monte Carlo simulation and of a much faster parametric fast simulation which can directly leverage the existing BaBar analysis code base;
- the implementation of a production system for managing very large productions that can parasitically exploit the computing resources available on the European and US Grids.

A description of the tools made available and their capabilities is reported in the second part of the section.

9.1 The SuperB baseline model

The data-processing strategy for SuperB is envisaged to be similar to the one employed in BaBar and can be summarized as follows. The "raw" data coming from the detector are permanently stored, and run through the reconstitution pass that consists of two steps:

- a "prompt calibration" pass performed on a subset of the events to determine various calibration constants.
- a full "event reconstruction" pass on all the events that uses the constants derived in the previous step.

Reconstructed data are also permanently stored and data quality is monitored at all steps in the process.

A comparable amount of Monte Carlo simulated data is also produced in parallel and processed in the same way.

In addition to the physics triggers, the data acquisition also records random triggers that are used to create "background frames". Monte Carlo simulated data, incorporating the calibration constants and the background frames on a run-by-run basis, are prepared.

Reconstructed data, both from the detector and from the simulation, are stored in two different formats:

- the Mini that contains reconstructed tracks and energy clusters in the calorimeters as well as detector informations. It is a relatively compact format, through noise suppression and efficient packing of data.
- the Micro that contains only information essential for physics analysis.
9.1 The SuperB baseline model

Detector and simulated data are made available to physics analysis in a convenient form through the process of “skimming”. This involves the production of selected subsets of the data, the “skims”, designed for different areas of analysis. Skims are very convenient for physical analysis, but they do increase the storage requirement because the same events can be present in more than one skim.

From time to time, as improvements in constants, reconstruction code, or simulation are implemented, the data may be “reprocessed” or new simulated data generated. If a set of new skims become available, an additional skim cycle can be run on all the reconstructed events.

9.1.1 The requirements

The SuperB computing requirements can be estimated using as a basis the present experience with BABAR and applying a scaling of about two orders of magnitude. Fortunately, much of this scaling exercise is quite straightforward.

As a baseline, we simply scale all rates linearly with luminosity. Only a few parameters have been modified to keep into account improved efficiency of utilization of the computing resources that are likely to be obtained with SuperB, i.e.:

- the skimmed data storage requirements have been reduced (by 40%), assuming a more aggressive use of events indexing technique;
- the CPU requirements for physics analysis are reduced by a factor of two as a result of more stringent optimization goals that can be achieved in SuperB;
- the duration of the reprocessing and simulation re-generation cycle, expected to take place once significant improvements of the reconstruction code physics performance have been obtained, has been set to 2 years instead of one, as it was in BABAR; in view of the larger expected cost-to-benefit ratio;

The resulting CPU and storage requirements are shown in Table 5 for a typical year of data taking at nominal luminosity, assuming an integrated luminosity of 50 ab$^{-1}$ reached at the end of the same year.

Table 5: Summary of computing resources needed in a typical year of SuperB data taking at nominal luminosity, assuming an integrated luminosity of 50 ab$^{-1}$ has been collected.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity (ab$^{-1}$)</td>
<td>15</td>
</tr>
<tr>
<td>Storage (PB)</td>
<td>Tape: 113, Disk: 52</td>
</tr>
<tr>
<td>CPU (KHep-Spec06)</td>
<td>Event data reconstruction: 210, Skimming: 250, Monte Carlo: 670, Physics analysis: 570</td>
</tr>
<tr>
<td>Total</td>
<td>1700</td>
</tr>
</tbody>
</table>

The total amount of computing resources to be made available for one year of data taking at nominal luminosity are of the same order of the corresponding figures estimated, in the spring of 2010, by the Atlas or CMS experiments for the 2011 running period. For comparison, the average values of the latters, in terms of total CPU, disk and tape space amount to 580 KHep-Spec06, 60 PB and 47 PB respectively. However SuperB will profit of the technological advances that will take place over a period of approx. 10 years. As for the case for the LHC experiments, SuperB will also make large use of distributed computing resources accessible via the Grid infrastructures. This will introduce an important flexibility factor in provisioning the required level of computing resources.

9.1.2 SuperB offline computing development

The bulk of the superB software development effort is foreseen to take place after the Computing TDR has been released at the end of 2011.
All major design choices should at that time be made, based to a large extent on the results of the R&D activities previously carried out.

We estimate that, in approximately two years, a preliminary version of a fully-functional offline system can then be built and validated via dedicated data challenges, so that the collaboration can start using it for detector and physics simulation studies at the beginning of 2014.

Through further extensive tests and developments cycles the system will be brought to its full scale size in the following couple of years. Before the SuperB collider is turned on, acquisition and deployment of dedicated computing resources will also be carried out during that period as part of consolidation and validation of the distributed computing infrastructure. Such SuperB will have to count on.

The confidence in this time model is supported by the comparison with the BABAR, which it took instead nearly five years, from 1995 to 1999, to develop and deploy in operation the BABAR FastSim system.

9.2 Computing tools and services for the Detector and Physics R&D studies

9.2.1 Fast simulation of the SuperB detector

Because the SuperB detector and its machine environment will differ substantially from those of BABAR, simple extrapolations of BABAR measurements are not adequate to estimate the physics reach of the experiment. Additional study to make optimal choices in the SuperB detector design, an understanding of the best of design options on the final chosen critical physics analyses is needed. However, a detailed simulation of the full SuperB detector, with all its various options, carried out to the level of statistical precision needed for a relevant physics study, is beyond the capabilities of the current SuperB computing infrastructure.

To address these needs, the SuperB computing group has developed a fast simulation (FastSim). The SuperB FastSim relies on simplified models of the detector geometry, material effects, detector response, and reconstruction, in an event generation environment that is able to achieve an event generation rate of at least 10^3 events per second. The SuperB FastSim is easily configurable, allowing different detector options to be selected at runtime. The SuperB FastSim is compatible with the BABAR FastSim framework, allowing complete analyses to be performed with minimal development. To restate our design, the SuperB FastSim is able to overlay the effects of the machine and detector backgrounds. The SuperB FastSim framework can run multiple physics analyses in parallel, inline with the simulation, so that the analysis input is the event persistency. The SuperB FastSim is described in more detail below.

Event generator Because the SuperB FastSim is compatible with the detector analysis framework, we can exploit the same event generation tools used in BABAR. Typically, events (e^+ e^- → μ^+ μ^-), with the subsequent decay of the B and B̅ mesons, are generated through the EvtGen package [2]. EvtGen also has an interface to JETSET for the generation of continuum e^+ e^- → τ^+ τ^- events (γγ → τ^+ τ^-), and for the prompt, hadronic decays that are not explicitly defined in EvtGen. The SuperB machine design includes the ability to generate events with a (60 ± 5)% longitudinally polarized electron beam, which is especially relevant for tau physics studies. Events e^+ e^- → γτν, with polarized beam, are generated using the KK generator and TAUOLA [2]. Other important physics processes can be generated, such as Bhabha and radiative Bhabha scattering, e^+ e^- → e^+ e^- γ → e^+ e^-γγ. More details can be found at the end of this section where the simulation of machine backgrounds is described.

Detector description The SuperB FastSim models SuperB as a collection of detector elements that represent medium-scale pieces of the detector. The overall detector geometry is assumed to be cylindrical about the solenoid B axis, which simplifies the particle navigation. Individual de-
9.2 Computing tools and services for the Detector and Physics TDR studies

Detector elements are described as sections of 2-dimensional surfaces such as cylinders, cones, and planes, where the effect of physical thickness is modeled parametrically. Thus a barrel layer of Si sensors is modeled as a single cylindrical element. Intrinsically thick elements (such as the calorimeter crystals) are modeled by layering several 2-dimensional elements and summing their effects. Gaps and overlaps between the real detector pieces within an element (such as staves of a barrel Si detector) are modeled statistically.

The density, radiation thickness, interaction length, and other physical properties of common materials are described in a simple database. Composite materials are modeled as admixtures of simpler materials. A detector element may be assigned to be composed of any material, or none.

Sensitive components are modeled by optionally adding a measurement type to an element. Measurement types describing Si strip and pixel sensors, drift wire planes, absorption and sampling calorimeters, Cherenkov light radiators, scintillators, and TOF are available. Specific instances of measurement types with different properties (resolutions) can co-exist. Any measurement type instance can be assigned to any detector element, or set of elements. Measurement types also define the time-sensitive window, which is used in the background modeling described below.

The geometry and properties of the detector elements and their associated measurement types are defined through a set of XML files using the EEDML (Experimental Data Markup Language) schema, invented for SuperB. Related detector elements are arranged into volumes which are used in particle navigation. An "include" syntax in EEDML allows the files to be organized hierarchically, with all the elements in a given volume typically defined in a single file. Multiple configuration files can be processed in a single job, allowing the user to adjust a few select parameters without having to modify a "standard" configuration.

Interaction of particles with matter The SuperB FastSim models particle interactions using parametric functions. Coulomb scattering and ionization energy loss are modeled using the standard parameterizations in terms of radiation length and particle momentum and velocity. Moliere and Landau tails are modeled. Bremsstrahlung and pair production are modeled using simplified cross-sections. Discrete hadronic interactions are modeled using simplified cross-sections extracted from a study of Geant4 output. Electromagnetic showering is modeled using an exponentially-damped power law longitudinal profile and a Gaussian transverse profile, which includes the long-distance energy dependence and electron-photon differences of shower-max. Electron showering is modeled with a simple exponentially-damped longitudinal profile tuned using Geant4 output.

Unstable particles are allowed to decay during their traversal of the detector. Decay rates and modes are simulated using the BAZAR ExpCor code and parameters.

Detector response All measurement types for the detector technologies relevant to SuperB are implemented. Tracking measurements are described in terms of the single-hit and two-hit resolution, and the efficiency. Si strip and pixel detectors are modeled as independent 1-D views, with the efficiency being uncorrelated (correlated) for strips (pixels) respectively. Wire chamber planes are defined as 1-D views with the measurement direction oriented at an angle, allowing stereo and axial layers. Ionization measurements (dE/dx) used in particle identification are modeled using a Berth-Bloch parametrization.

The Calorimeter response is modeled in terms of the intrinsic energy resolution of clusters as a function of the incident particle energy. Energy deposits are distributed across a grid representing the crystal or pad segmentation. Cherenkov rings are simulated using a lookup table to define the number of photons generated based on the properties of the charged particle.
when it hits the radiator. Timing detectors are modeled based on their intrinsic resolution.

Reconstruction A full reconstruction based on pattern-recognition is beyond the scope of the FastSim. However, a simple measuring of particle properties is insensitive to important effects like backgrounds. As a compromise, FastSim reconstructs high-level detector objects (tracks and clusters) from simulated low-level detector objects (i.e., hits and energy deposits), using the simulation truth to associate detector objects. Pattern recognition errors are then modeled by perturbing the truth-based association, using models based on observed BaBar pattern recognition algorithm performance.

In tracking, hits from different particles within the 2-hit resolution of a device are merged, the resolution degraded, and the resultant merged hit is assigned randomly to one or the other particle. Hits overlapping within a region of 'potential pattern recognition confusion', defined by the particle momentum, are statistically mis-assigned to one or the other particle, based on their proximity. The final set of hits associated to a given charged particle are then passed to the BaBar Kalman filter track fitting algorithm to obtain reconstructed track parameters at the origin and the outer detector. Outer hits are pruned during the fitting, based on their contribution to the fit χ^2, as in BaBar. Ionization measurements from the charged particle hits associated to a track are combined using a truncated-mean algorithm, separately for the SVT and DCH hits. The truncated mean and its estimated error are later used in particle identification (PID) algorithms. The Cherenkov angle coming from the lookup table is smeared according to the Kalman filter track fit covariance at the radiator.

In the calorimeter, overlapping signals from different particles are summed across the grid. A simple cluster-finding based on a local maxima search is run on the grid of calorimeter response. The energies deposited in the cluster cells are used to define the reconstructed cluster parameters (cluster energy and position). A simple track-cluster matching based on proximity of the cluster position to a reconstructed track is used to distinguish charged and neutral clusters.

Machine-Backgrounds Machine backgrounds at SuperB are assumed to be dominated by luminosity-based sources, as the SuperB beam currents will not be much higher than at BaBar, which was mostly affected by luminosity-based background. The two dominant processes are believed to be radiative Bhabhas and QED 2-photon processes ($e^+e^- \rightarrow e^+e^-\gamma\gamma$). Because the bunch spacing (5nsec) is short relative to the time-sensitive window of most of the SuperB detectors, interactions from a wide range bunch crossings must be considered inessential background sources.

Understanding the effect of backgrounds on physics analyses is crucial when designing detector design choices, such as the tradeoffs between spatial versus timing resolution, and for understanding the physics algorithms required for operating at $L = 10^{36}\text{cm}^{-2}\text{sec}^{-1}$. Understanding background effects on electronics (hit pileup) and sensors (saturation or radiation damage) are also crucial for SuperB, but are best studied using the full simulation and other tools.

Background events are generated in dedicated FastSim or fullsim runs. Fullsim is needed to model the effect of backgrounds coming from small-angle radiative Bhabha showers in the machine elements, as a detailed description of these elements and the processes involved are beyond the scope of FastSim. Large-angle radiative Bhabhas, and two-photon events, where the primary particles directly generate the background signals, are generated using FastSim. The same BaBar generators are used in FastSim and fullsim.

Background events are stored as lists of the generated particles, in ROOT files of TClonesArrays of TParticles. The events and their particles are filtered to save only those which enter the sensitive detector volume. For both the low-angle radiative Bhabha events and the two-photon events, the generated events are com-

9 Software and Computing

9.2 Computing tools and services for the Detector and Physics TDR studies

Combined to correspond to the luminosity of a single bunch crossing at nominal machine parameters, with the actual number of combined event taken from sampling the appropriate Poisson distribution.

Background events from all sources are overlaid on top of each generated physics event during FastSim simulation. The time origin of each background event is assigned randomly within a global window of 0.5 µsec (the physics event time origin is defined to be 0). Background events are sampled according to a Poisson distribution whose mean is the effective cross-section of the background process times the global time window.

Particles from background events are simulated exactly as those from the physics event, save that the response they generate in a sensitive element is modulated by their different time origin. In general, background particle interactions outside the time-sensitive window of a measurement type do not generate any signal, while those inside the time-sensitive window generate nominal signals. Background particle calorimeter response is modeled based on waveform analysis, resulting in exponentially-decaying signals before the time-sensitive window, and nominal signals inside. The intermingling, pat-rec confusion and cluster merging described earlier are applied to background particle signals, so that fake rates and resolution degradation can be estimated from the FastSim output. A mapping between reconstructed objects and particles is kept, allowing analysts to distinguish background effects from other effects.

Analysis tools Because the FastSim is compatible with the BABar analysis framework, existing BABar analyses can be run in FastSim with minimal modification. For instance, the vertexing tools and combinatorics engines used in BABar work also in FastSim.

The primary difference is that only a subset of the lists of identified particles (PID lists) available in BABar are available in FastSim. The majority of the available PID lists are based on tables of purities and fake rates extracted from BABar, with the additional coverage of the underlying technology was therefore the natural choice, as well as C++ as the program-

...
Simulation output: Hits and MonteCarlo Truth

Hits from the different sub-detectors, which represent the simulated event as seen from the detector, are saved in the output (ROOT) file for further processing. Also the MonteCarlo Truth (MCTruth), intended as a summary of the event as seen by the simulation engine itself, i.e. with full detail, is saved and can be exploited in Bruno in several useful ways, the most important being the estimation of the particle fluxes at sub-detector boundaries by means of full snapshots taken at different scoring volumes.

Staged simulation

In particular in the design phase, a very frequent use-case will be the one in which a detector modifies its layout and wants to use full simulation to better evaluate the effect of the change. This would normally trigger the need of productions of large set of events which, with all sub-detectors working in parallel, may lead to a large and inefficient use of computing resources. In Bruno this potential risk is mitigated by the implementation of staged simulation, where snapshots of particles taken at a specific detector boundaries, can be read back and used to start a new simulation process without the need of re-tracking particles through sub-detectors that sit at inner positions.

Interplay with FastSim

As already mentioned in the introduction, full simulation can also be used to help the FastSim programs in certain particular contexts. The design of the interaction region in particular has a deep influence on the background rates as seen from the detector. Simulating such a complex geometry with the required level of details would be beyond the purpose of the FastSim. On the other hand, full simulation is not fast enough to generate the high statistics needed for signal events. SuperB implements presently a hybrid approach to this problem:

Geometry description

The need to re-use as much as possible the existing geometrical description of the Babar full simulation, called for some interchange, application-independent format to convey the information concerning the geometry and materials of the sub-detectors. Among the formats currently used in High Energy Physics applications, the Geometry Description Markup Language (GDML) was chosen due to the availability of native interfaces in Geant4 and ROOT and the easyness of human inspection and editing provided by the XML-based structure.

The choice of GDML also brings in some limitations, of course, one being for example the limited support for loops and volume parameterization. In the longer term, with the progressive stabilization of the detector layout, it is not to be excluded that the GDML-based approach will be dropped in favor of some custom solution, thus gaining in flexibility while losing the no-more-crucial easyness of inspection.

Simulation input: Event generators

Bruno can be interfaced to an event generator in two ways: either by direct embedding of the generator code or by using an intermediate exchange format.

In the latter case, the event generator is run as a different process and its results are saved in a file, which is then used to seed the full simulation job. Bruno presently supports two interchange formats: a plain ASCII file and a purely ROOT-based one, using persistified instances of the TParticle class.
9.2 Computing tools and services for the Detector and Physics TDR studies

- Bruno is used to simulate background events up to (including) the interaction region.
- A snapshot of the simulation status is saved, along the lines of what already discussed above.
- In order to gain time, the full simulation of the event can optionally be aborted once the relevant information has been saved.

The result of this procedure is a set of background frames, which can be read back in the FastSim program whose role would be, at this point, to propagate these particle through the simplified detector geometry and overlay the resulting hits to the ones coming from signal events.

This approach allows to combine the two simulations and effectively use each one only for the tasks it performs better.

Another aspect where the interplay between fast and full simulation is needed is the evaluation of the neutron background. The idea is to make Bruno handle all particle interactions within the interaction region, as explained above, plus all neutron interactions afterwards. Neutrons are tracked in full simulation until they decay, and the decay products saved in the output file, as part of the background frame. FastSim can then include these interactions the overlaying procedure.

All these functionalities are presently implemented, and have been used in the recent productions.

9.2.3 The distributed production environment

To design the detector and to extract statistically significant results from the data analysis, a huge amount of Monte Carlo simulated events is needed. Such a production is way beyond the capabilities of a single computing farm so it was decided to design, already for supporting the detector TDR studies, a distributed model capable of fully exploiting the existing HEP world wide Grid computing infrastructure.

Table 6: List of sites and Grid technologies involved in SuperB distributed computing model as of January 2010

<table>
<thead>
<tr>
<th>Site name</th>
<th>Grid flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNAF Tier1, Bologna, Italy</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>Caltech, California, USA</td>
<td>OSG/Condor</td>
</tr>
<tr>
<td>SLAC, California, USA</td>
<td>OSG/Condor</td>
</tr>
<tr>
<td>Queen Mary, London, UK</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>RALPP, Manchester, UK</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>GRIFF, Paris/Orsay, France</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>INP2I, Avignon, France</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>INFN-LNL, Legnaro, Italy</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>INFN-Pisa, Pisa, Italy</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>INFN-Bari, Bari, Italy</td>
<td>EGEE/gLite</td>
</tr>
<tr>
<td>INFN-Napoli, Napoli, Italy</td>
<td>EGEE/gLite</td>
</tr>
</tbody>
</table>

The LHC Computing Grid (LCG) architecture was adopted to provide the minimum set of services and applications on which the SuperB distributed model could be built upon and the INFN Tier1 site located at CNAF (Bologna) was chosen as the central site where submission management, the Bookkeeping Data Base and the data repository would reside.

Jobs submitted to remote sites transfer their output back to central repository and update the Bookkeeping Data Base containing all metadata related to the production input and output files. The system uses standard Grid services such as: WMS, VOMS, LFC, StolM, GANGLA, etc... The distributed computing infrastructure, as of January 2010, includes several sites in Europe and North America as reported in Table 6. Each site implements a Grid flavor depending on its own affiliation and geographical position. The EGEE Workload Manager System (WMS) permits to manage transparently the jobs life through the different involved Grid middleware flavors.

Simulation production work-flow

The production of simulated events is performed following three main phase:
1. Distribution of input data files to remote site Storage Elements. In fact, jobs running on each site should be able to access input...
Production Tools

Both the job submission system and the individual physicist require a way to identify interesting data files and to locate the storage holding them. To make this possible, the experiment needs a data bookkeeping system to maintain the semantic information associated to data files and keep track of the relation between executed jobs and their parameters and outputs.

Moreover, a semi-automatic submission procedure is needed in order to keep data consistent, to speed up production completion and to provide an easy-to-use interface for non-expert users. To accomplish this task, a web-based user interface has been developed which takes care of the database interactions and the job preparation; it also provides basic monitor functionalities.

The bookkeeping database was modeled according to the requirements specified by the collaboration, and implemented adhering to the relational model with MySQL rDBMS. It was extensively tested against the most common use cases and provides a central repository of the productions metadata.

Web-based User-Interface

A Web-based User-Interface (WebUI) has been developed using PHP scripting language and is strictly bounded to the bookkeeping database which provides inputs for the job preparation and monitoring.

The WebUI presents two different sections for Full Simulation and Fast Simulation. Each of them is then subdivided in a submission and a monitor subsection. A basic authentication and authorization layer, based on the collaborative tools permits the differentiation of users and grants the access to the corresponding sections of the site.

A typical production workflow consists of an initialization phase, during which the data of a bunch (or several bunches) of jobs must be inserted into the database, and of the subsequent phase of submission either to a batch system or to a distributed environment. The simulation jobs must then extensively interact with the...
9.2 Computing tools and services for the Detector and Physics TDR studies

A production software layer and a database manager layer have thus been developed to interface the database with the jobs. The prototype service uses a RESTful [26] interface in order to allow the communications between centralized or distributed jobs and a centralized database. However, this solution is not well suited for distributed and/or replicated databases that may be needed in the future.

To facilitate the job preparation procedure and the subsequent submission, the WebUI presents a web form which allows the input of the simulation job parameters; the form is dynamically generated from the database by means of pull-down menu filled with appropriate data. It is also possible to prepare multi-set (bunches) of jobs at once. After the job initialization, the WebUI prepares a submission script that includes the user-selected parameters and parametric production job scripts. Job submission can be either local or grid, so the production job scripts prepared by the WebUI will be launched by the user through two different ways: LSF for local submission, GANGA for Grid submission.

The WebUI provides basic monitoring features by means of querying the bookkeeping database. The user can retrieve the list of jobs as a function of run number range, generator, geometry, physics list, site, status, and so on... The monitor provides, for each job, the list of output files — if any — and a direct access to the log files. Reports on output file size, execution time, site loading, job spread over channels, and the list of the last finished jobs (successfully or with failures) are provided. The monitoring section allows also to get a user selectable list of output files.

Remote Grid sites Sites involved in the SuperB Distributed computing infrastructure needs to enable the superbvo.org Virtual Organization (VO); install the SuperB FastSim software as specified in the VO Identity Card. Currently no permanent storage is required at the sites, apart from CNAF. Memory requirements are modest (2Gbyte RAM per core and 2Gbyte virtual memory).

Each site goes through a pre-verification process run by the site contact to test if the site is capable of running the SuperB software. Job submission tests are performed using the gLite grid middleware tools and include accessing the VO, obtaining and authenticating the site contacts proxy with the SuperB VO, identifying accessible Compute Elements (CE), submission of a simple shell script to the a specific CE on the grid, monitoring of the progress, and retrieval of the output. Small data files are used to test the ability to register the output with an LCG File Catalogue (LFC) at the remote site and to transfer the data to a central site at CNAF.

First 2010 Productions The production system has been used during the first large scale production in January, February and March 2010 for an intense production cycle of Full Simulation and Fast Simulation. During this production phase, over 1.7 billion simulation events, equivalent to 6.38 ab−1, were produced using the distributed computing environment. The Full Simulation production was divided in two categories: simulation of machine background frames for Fast Simulation (bgframes) and full simulation for machine background studies (bgstudies). The entire Full Simulation production ran at CNAF in about 12 days. Table 7 shows the production summary.

The Fast Simulation production was divided in two types: simulation of generic events (bgstudies), B±B0, B±B0bar and uds) and simulation of specific decay channels (signal mode). For generics, four generators and three geometry configurations were used. Events with and without background mixing were produced. In the signal mode production four physics channels events were simulated with background mixing. Results are summarized in table 8. Fast Simulation production involved nine remote site: about 82% of submitted jobs used the grid infrastructure and/or exploited remote re...
Table 7: Full Simulation Production Summary

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Status</th>
<th>Jobs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperB</td>
<td>done</td>
<td>4000</td>
<td>10</td>
</tr>
<tr>
<td>SuperB</td>
<td>failed</td>
<td>1</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Status</th>
<th>Jobs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>shielded</td>
<td>done</td>
<td>4840</td>
<td>60400</td>
</tr>
<tr>
<td></td>
<td>sys-failed</td>
<td>1</td>
<td>180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Status</th>
<th>Jobs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>unshielded</td>
<td>done</td>
<td>785</td>
<td>196250</td>
</tr>
<tr>
<td></td>
<td>failed</td>
<td>2</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>sys-failed</td>
<td>13</td>
<td>3250</td>
</tr>
</tbody>
</table>

Table 8: Fast Simulation Production Summary

<table>
<thead>
<tr>
<th>Geometry, Generics</th>
<th>Status</th>
<th>Jobs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>done</td>
<td>4358</td>
<td>1.043×10^10</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1472</td>
<td>1.472×10^10</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5830</td>
<td>2.515×10^10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geometry, Signal</th>
<th>Status</th>
<th>Jobs</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>done</td>
<td>4358</td>
<td>1.043×10^10</td>
</tr>
<tr>
<td></td>
<td>BtoTauNu</td>
<td>60</td>
<td>6×10^6</td>
</tr>
<tr>
<td></td>
<td>BtoKNuNu</td>
<td>60</td>
<td>6×10^6</td>
</tr>
<tr>
<td></td>
<td>BtoKstarNuNu</td>
<td>60</td>
<td>6×10^6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>838</td>
<td>8.38×10^6</td>
</tr>
</tbody>
</table>

9.2.4 The software development and collaborative tools

As a collaboration facing the task of preparing design documents and developing software code, the SuperB group needs to be supported by a set of suitable computing tools in carrying out its day-by-day coordinated activities. A description of such tools that are currently available is presented here.

Directory Service

To support the access to the collaborative tools through a unique authentication and authorization interface, a directory service based on LDAP application protocol was made available and it has been now actively used for more than one year. A web interface to provide an easy way to manage the directory tree has also been set up by modifying open source software and is ready to enter the testing phase. In choosing all the other tools we put a great emphasis on the ability to integrate with the directory service.

Web site

To make the inclusion of information content easier for the collaborators it was decided to create a web site managed by a content management system (CMS). After some testing phase and initial experience with Drupal, the Joomla open source CMS was selected due to its rather user-friendly interface and two web sites

Sources, as illustrated in Fig. 47 for the Generics production.

Over a period of 2 weeks, approximately 20000 jobs were completed with an average ~8% failure rate, mainly due to site microconfigurations (2.6%), proxy expiration (2.0%), and temporary overloading of the machine used to receive the data transfers from the remote sites at CNAF (3%). The peak rate reached 3200 simultaneous jobs with an average of 500.

Figure 47: Jobs submitted to remote sites for the Generics Production.
References were built up, the first addressing the needs of the SuperB group and the second dedicated to the general public.

Wiki The web site notwithstanding, the collaboration has realized from the beginning the need for a tool that allows:

- an easy way to create web pages to be used as internal documentation
- to create meaningful topic associations between different pages by making link creation an easy task, and showing whether an intended target page exists or not
- to quickly modify already existing pages, keeping track of what changed recently

This kind of requirements leads us to considering the use of a Wiki. A wiki website in fact allows for the easy creation and editing of any number of web pages using just a browser and a WYSIWYG text editor or a simplified markup language.

Since several opensource wikis exist, we did a little testing to see if they can provide additional benefits like: integration with directory service, handling formulas written in TeX, handling different kind of pictures/plots. At the moment we are in production phase, the wiki server being up and running, integrated with the directory service and being generally used by several subdetector groups.

Software repository To manage the production of software code, we decided to use a source code management system. The version open source tool was selected as the most suitable for SuperB at this stage of the project. Due to the multi-developer way of producing code within a collaboration like SuperB the repository was the first tool deployed and integration with the directory service.

9.2.5 Code packaging and distribution

As almost all the computing power available in the collaborating institutes is made of Linux boxes with RH/SL or Suse/Solaris distributions, it was decided to build releases only for these operating systems, in particular the builds are available for RH/SL 4.6 and for RH/SL 5.1 for 32 bit architectures. Work is ongoing to extend the support also for 64 bit architectures; we expect to have it available by summer 2010.

Also support for MacOSX is under study, given that under some aspects this system is quite different from Linux it might require some time and dedicated effort before fully supporting it.

Tools Given that the chosen architecture use RPM [19] for packaging the software and yum [20] to distribute it, it was decided to adopt these technologies to ease installation of the SuperB software. RPM provides the capability of tracking package dependencies, which helps in ensuring that all required software for a given software release is installed.

We do not limit software packaging to only SuperB code but we package also external software used by the like ROOT [21], GEANT4 [22], CLHEP [24], CERNLIB [23] and Xerces-c [25]. The reason to have a specific experiment version/packaging for these tools is to avoid conflicts with other experiments using a different release of the same software, or the same release build with different options.

To improve security packages are signed in order to guarantee their origin. To distribute the software yum repositories have been setup, one per architecture.

References

SuperB Detector Progress Report
References

SuperB Detector Progress Report
10 Mechanical Integration

10.1 Introduction

The BaBar detector was built to a design optimized for operations at a high luminosity asymmetric B meson factory. The detector performed well during the almost nine years of colliding beams operation, at luminosities three times the PEP-II accelerator design. There is substantial cost and schedule benefit that can result from re-use of detector components from the BaBar detector in the SuperB detector in instances where the component performance has not been significantly compromised during the last decade of use. The cost and schedule benefits arise from two sources: the one of having a completed detector component which, though it may require limited performance improvements, will function well at the SuperB Factory; and the other of requiring reduced interface engineering, installation planning and tooling manufacture (most of the assembly/disassembly tooling can be reused). The latter reduces risk to the overall success of the mechanical integration of the project. Though re-use is very attractive, risks are also introduced. Can the detector be disassembled, transported, and reassembled without compromise? Will components arrive in time to meet the project needs?

The sense of elements of the PID, EMC and IFR system, and associated support structures have been described in previous chapters. In this section, issues related to the magnet coil and cryostat, and the IFR steel and support structure are discussed as well as issues of the integration and assembly of the SuperB detector, which begins with the disassembly of BaBar and includes shipping components to Italy for reassembly there.

10.1.1 Magnet and Instrumented Flux Return

The BaBar superconducting coil, its cryostat and cryo-interface box, and the helium compressor and liquefier plant will be used in whole or in part. The magnet coil, cryostat and cryo-interface box will be used in all scenarios. Use of on detector pumps and similar components may not be cost effective due to mechanical incompatibility. An initial review of local refrigeration facilities at the SuperB site suggests that there may not be sufficient capacity in that system to cool both the detector magnet and the final four superconducting magnets. The BaBar helium liquefier plant, which is expected through its forty year service life to have sufficient capacity. The final decision about these external service components will take into account electrical compatibility, schedule and cost.

The flux return steel is organized into three structures: the barrel portion, and two sets of two end doors. Each of these is in turn composed of multiple structures. The structures were sized to match the 50 ton total limit of the IR2 crane.

Each of the end doors is composed of eighteen steel plates organized into two modules joined together on a thick steel platform. This platform rests on four columns with jacks and Hilman rollers. A counterweight is also located on the platform. There are 9 steel layers of 20mm thickness, 4 of 30mm thickness, 4 of 50mm thickness, and 1 of 100mm thickness. During 2002, five layers of brass absorber were installed in forward end door slots in order to increase the number of interaction lengths seen by µ candidates. In the baseline, those doors will be retained, along with the five 25mm layers of brass installed in 2002, as well as the outer steel modules which can house two additional layers of detectors. Additional layers of brass or steel will be added, following the specification of the baseline design in the instrumented flux return section. A cost/benefit analysis will be performed to choose between brass and steel. The aperture of the forward plug must be opened to accommodate the accelerator beam pipe. Compensating modifications to the backward plug are likely to be necessary. Understanding the effects of modifications to the steel on the central field uniformity and on the centering forces
10 Mechanical Integration

on the solenoid coil will need to be taken into account in the design of these changes.

The barrel structure consists of six cradles. These are each composed of 18 layers of steel. The inner 16 layers have the same thicknesses of the corresponding end door plates. The two outermost layers are 100mm each. The 18 layers are organized into two parts, the inner 16 layers which are welded into a single unit along with the two side plates, and the outer two layers, which are welded together and then bolted into the cradle. The six cradles are in turn suspended from the double I-beam truss that supports the detector. During the 2004/2006 barrel LST upgrade, layers of 22mm brass were installed, replacing the layers of detectors in the cradles. In the SuperB baseline, these components will be retained, as well as all the additional flux return steel attached to the barrel in the gap between the end doors and barrel. As in the end doors, additional layers of chamber will be placed in gaps occupied in barrel LSTs. In order to provide more uniform coverage at the largest radius for the 6 identification system, modifications to the sextant steel support mechanism are likely to be needed. Finite element analyses are in progress to determine that deflections of the steel structure due to this alternative support mechanism do not reduce interplate gaps needed for the sensors.

10.2 Component Extraction

Extraction of components for reuse requires the disassembly of the BaBar detector. This process began after the completion of BaBar operations in April 2008. The first stage of the project was to establish a minimal maintenance state, including stand alone environmental monitoring, that preserves the assets that have reuse value. The transition was complete in August. In order to disassemble the detector into its component systems, it must be moved off the accelerator beamline where it is pinned between the massive supports of accelerator beam line elements into the more open space in the IR2 Hall. This required removal of the concrete radiation shield wall, severing of the cable and services connections to the electronics house which contained the off detector electronics, and roll-back of the electronics house 14m. Electronics, cables and infrastructure that were located at the perimeter of the detector were removed. Beam line elements close to the detector were removed to allow access to the central core of the detector. By July 2009, allowing removal of the support tube, which contains the accelerator final beamline elements as well as the silicon vertex detector, the following month.

The core disassembly sequence was optimized after the Conceptual Design Report. Completion of disassembly of the detector requires fewer steps, less time, and poses fewer risks, if the end doors are disassembled while the detector is on beamline. As of mid-May 2010 three of the four end doors have been broken down into component parts, and the EMC forward endcap and the drift chamber had been removed, with the final end door breakdown to be completed within a month.

This work has been accomplished as a low priority project with a small crew of engineers and technicians. Though the disassembly project is behind schedule due to laboratory priorities, the earned value compared to actual costs indicates that the level of effort estimated to perform the disassembly is very accurate. The same methodology used to determine the level of effort needed for the BaBar disassembly has been applied in estimating the needs for SuperB assembly.

The components from BaBar that are expected to be reused in SuperB are expected to be available for transport to Italy in mid-2011. This should present no challenge to the SuperB project schedule. The remaining steps in the BaBar disassembly, which represents more than half of the effort, are outlined below. Tooling that was used in the initial installation of the detector at IR2 is in the process of being refurbished and additional tooling is being fabricated for the disassembly effort. All of this tooling is available for use on SuperB.

After rolling off the beamline, the next phase of detector disassembly consists of extraction of
10.3 Component Transport

The DIRC and its support system from the core of the detector. In order to minimize damage to the DIRC bar boxes and their quartz content, disassembly proceeds with removal of these from the bar box support structure inside the DIRC. They will be stored in an environmentally controlled container to await shipment to Italy. The SOB is removed. The DIRC structure is then removed from the barrel.

The barrel EMC is then removed from the barrel steel. The solenoid is removed from the barrel steel. A temporary structure is assembled inside the barrel hexagon to support the upper cradles during disassembly. The upper half of the support belt is removed. Because of the load limitations of the IR2 crane, the six cradles must be disassembled in situ. The outer sections of the top cradles are removed, followed by the inner part of each of the three cradles. The temporary support structure is removed. The inner part of the lower cradles is removed, followed by the outer portions. The balance of the structural belt is disassembled.

10.3 Component Transport

The magnet steel components will be crated for transport to limit damage to mating surfaces and edges. Most, if not all, of these components can be shipped by sea.

The BaBar solenoid was shipped via special air transport from Italy to SLAC. It is expected that this component can be returned to Italy in the same fashion. The original transport frame needs some refurbishment. Drawings exist for parts fabrication so that only a small engineering effort is needed here.

The DIRC and barrel calorimeter present transportation challenges. In both cases transport without full disassembly is preferred. In the case of the DIRC, the central support tube will be separated from the strong support tube and transported as an assembly, assuming that engineering studies indicate that this is possible. The transport cradle for the central support tube has had no design effort yet. The bar boxes have a storage container which provides a dry environment. Whether this can be used for air transport, or a newly designed and fabricated container is required, remains to be determined. Disassembly of the bar boxes exposes the precious bars to damage; it is not considered a viable option.

In the case of the EMC, there are two environmental constraints on shipment of the device or its components. The glue joint that attached the photodode readout package to the back face of the crystal has been tested, in mock-up, to be stable against temperature swings of ±5°C. During the assembly of the endcap calorimeter, due to a failure of an air conditioning unit, the joints on one module were exposed to double this temperature swing. Several glue joints parted. The introduction of a clean air gap causes a light yield drop of about 25%. In order to avoid this reduction in performance, temperature swings during transport must be kept small. Since the crystals are mildly hygroscopic, it is best that they be transported in a dry environment to avoid changes in the surface reflectivity, and consequent modification in the longitudinal response of the crystal. Individual endcap modules constructed in the UK were successfully shipped to the US in specially constructed containers that kept the temperature swings and humidity acceptably small.

Disassembly of the barrel calorimeter for shipment presents a substantial challenge. Both the disassembly and assembly sites need to be temperature and humidity controlled. The disassembly process requires removal of the outer and inner cylindrical covers, removal of cables that connect the crystals with the electronics crates at the ends of the cylinder, splitting of the cylinder into its two component parts and removal of the 280 modules for shipment. Though much of the tooling is still in hand, the environmentally conditioned buildings used in calorimeter construction at SLAC no longer exist, though alternative facilities could be fit out. The cooling and drying units used in the module storage/calorimeter assembly building continue to be available.

The clear preference is to ship the barrel calorimeter as a single unit by air. With tooling
10.4 Detector Assembly

Assembly of the SuperB detector is the reverse of the disassembly of the detector. Ease of assembly will be influenced by the factors which are available. In the case of SuperB, the use of the IR2 hall led to engineering compromises in the design of the detector. Assembly was made more complicated by the weight restrictions posed by the 50 ton crane. Upgrades were made more difficult because of limitations in movement imposed by the size of the hall.

The preferred dimensions for the area around the detector when it is located in the detector housing are 16.2m transverse to the beamline, 20.0m along the beamline, 11.1m from the floor to the bottom of the crane hook, 15.0m from floor to ceiling, and 2.0m from the floor to the beamline. The increased floor to beamline height relative to SuperB, will require redesign effort for the underpinnings of the detector cradle. However, this will permit improved access for installation of cable and piping services for the detector, as well as make possible additional 0 detector solid angle coverage. In order to facilitate detector assembly, the preferred capacity for the two hook bridge crane is 100T/25T.

10.5 Component Transport

The magnet steel components will be crated for transport in order to limit damage to mating surfaces and edges. Most, if not all, of these components can be shipped by sea. Some optimization of shipment involving air transport may be required, depending on the details of the overall construction schedule. Detector components of the IFR that are reused can be shipped by sea. The BaBar solenoid was shipped via special air transport from Italy to SLAC. It is expected that this component will be returned to Italy in the same fashion.

The DIRC and barrel calorimeter present transportation challenges. In both cases trans-
10.6 Detector Assembly

Port with minimal disassembly is preferred to the extent possible.

The reused DIRC components include the strong support tube and bar boxes. It is assumed that the bar boxes will be transported intact, but removed from the support structure. Detailed engineering studies, which model accelerations and vibrations during a flight, are needed to determine how the DIRC can be safely transported. A dry environment is required in all cases to avoid condensation on the quartz bars. Disassembly of the bar boxes exposes the valuable bars to damage; it is not considered a viable option.

In the case of the EMC, there are two environmental constraints on shipment of the device or its components. The glue joint that attached the photodiode readout package to the back face of the crystal has been tested, in mock-up, to be stable against temperature swings of ±5°C. During the assembly of the endcap calorimeter, due to a failure of an air conditioning unit, the joints on one module were exposed to double this temperature swing. Several glue joints parted. The introduction of an air gap caused a light yield drop of about 25%. In order to avoid this reduction in performance, temperature swings during transport must be kept small. Since the crystals are mildly hygroscopic, it is best that they be transported in a dry environment to avoid changes in the surface reflectivity, and consequent modification in the longitudinal response of the crystal. Individual endcap modules constructed in the UK were successfully shipped to the US in specially constructed containers that kept the temperature swings and humidity acceptably small.

Disassembly of the barrel calorimeter for shipment presents a substantial challenge. Both the disassembly and assembly sites need to be temperature and humidity controlled. The disassembly process requires removal of the outer and inner cylindrical covers, removal of cables that connect the crystals with the electronics crates at the ends of the cylinder, splitting of the cylinder into its two component parts and removal of the 280 modules for shipment. Though much of the tooling exists, the environmentally conditioned buildings used in calorimeter construction at SLAC no longer exist, though alternative facilities could be fit out. The cooling and drying units used in the module storage/calorimeter assembly building continue to be available.

The clear preference is to ship the calorimeter as a single unit by air. Including the tooling support stand and environmental conditioning equipment, the load is likely to exceed 30 tons. It is anticipated that such a load could be transported in the same way as the superconducting coil and its cryostat, but verification is needed. Detailed engineering studies, which model accelerations and vibrations involved with flight that might cause the crystal-containing carbon fiber modules to strike one another, are needed to determine if the calorimeter can be safely transported. Engineering studies of overall stability of the EMC structure against the flight accelerations are also required.

10.6 Detector Assembly

Assembly of the SuperB detector is the inverse of the disassembly of the BABAR detector. Ease of assembly will be influenced by available facilities. In the case of BABAR, the space limitations of the IR2 hall led to engineering compromises in the design of the detector. Assembly was made more complicated by the weight restrictions posed by the 50 ton crane. Upgrades were made more difficult because of limitations in movement imposed by the size of the hall. A newly designed interaction region hall will ameliorate many of these problems.

11 Budget and Schedule

The SuperB detector cost and schedule estimates, presented in this chapter, rely heavily on experience with the BABAR detector at PEP-II. The reuse and refurbishing of existing components has been assumed whenever technically feasible.
possible and financially advantageous. Though these SuperB estimates are based on a bottom-up evaluation using a detailed work breakdown schedule, it should be emphasized that the detector design is still incomplete, with numerous technical decisions remaining to be made, and limited detailed engineering to date, so that that cost and schedule can not yet be evaluated at the detailed level expected in a technical design report.

The costing model used here is similar to that already used for the SuperB CDR. The components are estimated in two different general categories: (1) "LABOR" and (2) M & S (Materials and Services). M & S cost estimates are given in 2010 Euros and include the 20% of Value Added Tax (VAT). The "LABOR" estimates comprise two subcategories which are kept and costed separately as they have differing cost profiles; (1) EDIA (Engineering, Design, Inspection, and Administration) and (2) Labor (general labor and technicians). Estimates in both categories are presented in manpower work units (Man-Months) and not monetarized, as a monetary conversion can only be attempted after institutional responsibilities have been identified and the project time scale is known. The total project cost estimate can be calculated, once the responsibilities are identified, by summing the monetary value of these three categories.

Given the long term nature of this multinational project, there are several challenging general issues in arriving at appropriate costs including (1) fluctuating currency exchange rates, and (2) escalation. M&S costs and factory quotes that have been directly obtained in Euros can be directly quoted. M&S estimates in US dollars are translated from dollars to Euros using the exchange rate as of Jan 1, 2010 (0.694155 Euros/US$). For cost in Euros that were obtained in earlier years, the yearly escalation is rather small. For simplicity, we use a cost escalation rate of 2% per year which is consistent with the long term HICP (Harmonized Index of Consumer Prices) from the European Central bank. Costs given in 2007 Euros are escalated by the net escalation rate (1.061) for three years to arrive at the 2010 cost estimates given here [1].

For all items whose cost basis is BaBar, we accept the procedure outlined in the SuperB CDR which arrived at the costs given there in 2007 Euros. This procedure is divided into the corresponding cost (including manpower) from the PEP-II and BaBar project from 1995 to 2007 using the NASA technical inflation index [2] and then converted from US Dollars to Euros using the average conversion rate over the 1999-2006 period [3]. The overall escalation factor in the CDR, from 1995 dollars to 2007 Euro is thus 1.21 = 1.295 x 0.9154.

Similarly, the replacement values ("Rep.Val.") of the reused components, i.e., how much money would be required to build them from scratch, as presented in separate columns of the cost tables, have been obtained by escalating the corresponding cost (including manpower) from the BaBar project from 1995 to 2007. Though it is tempting to sum the two numbers to obtain an estimate of the cost of the project if it were to be built from scratch, this procedure yields somewhat misleading results because of the different treatment of the manpower rolled up in the replacement value; separation for the new cost estimate) and because of the double counting when the refurbishing costs are added to the initial values.

Contingency is not included in the tables. Given the level of detail of the engineering and the cost estimates, a contingency of about 35% would be appropriate.

11.1 Detector Costs

The costs, detailed in the Table are presented for the detector subsystem at WBS level 3/4. The SuperB detector is not completely defined: some components, such as the forward PID, have overall integration and performance implications that need to be carefully studied before deciding to install them; for some other components, such as the SVT layer 0, promising new technologies require additional R&D before they
can be definitively used in a full scale detector. The cost estimates list the different technologies separately, but the rolled-up value includes the baseline detector choice that is considered most likely to be used. Technologies that are not included in the rolled-up value are shown in italics in the table.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperB detector</td>
<td>7921</td>
<td>2001</td>
<td>48922</td>
</tr>
<tr>
<td>1.0 Interaction region</td>
<td>21</td>
<td>12</td>
<td>860</td>
</tr>
<tr>
<td>1.0.1 Be Beampipe</td>
<td>14</td>
<td>14</td>
<td>280</td>
</tr>
<tr>
<td>1.0.1.1 Vertex chamber design</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0.1.2 Finalize Physics Req.mnts</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0.1.3 Fab method</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0.1.4 Finalize Procurement</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.0.1.5 Chamber detailing</td>
<td>0</td>
<td>0</td>
<td>231</td>
</tr>
<tr>
<td>1.0.1.6 Support procurement</td>
<td>0</td>
<td>0</td>
<td>231</td>
</tr>
<tr>
<td>1.0.1.7 Procure Beampipe Assembly</td>
<td>0</td>
<td>0</td>
<td>231</td>
</tr>
<tr>
<td>1.0.1.8 Procure Vx chamber Misc parts</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1.0.1.9 Assemble Vx chamber, test, clean</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1.0.2 Tungsten Shield</td>
<td>0</td>
<td>0</td>
<td>540</td>
</tr>
<tr>
<td>1.0.2.1 Shield optimization</td>
<td>7</td>
<td>7</td>
<td>321</td>
</tr>
<tr>
<td>1.0.2.2 Shield detailing and integration</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0.2.3 Shield procurement</td>
<td>0</td>
<td>0</td>
<td>540</td>
</tr>
<tr>
<td>1.0.2.4 Shield assembly and installation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0.3 Radiation monitors</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>1.1 Tracker (SVT + Strip + MAPS)</td>
<td>206</td>
<td>331</td>
<td>4328</td>
</tr>
<tr>
<td>1.1.1 SVT</td>
<td>166</td>
<td>317</td>
<td>4328</td>
</tr>
<tr>
<td>1.1.1.1 Mechanical</td>
<td>166</td>
<td>317</td>
<td>4328</td>
</tr>
<tr>
<td>1.1.1.2 Cooling</td>
<td>4</td>
<td>5</td>
<td>155</td>
</tr>
<tr>
<td>1.1.1.3 Silicon Wafers and Focant</td>
<td>37</td>
<td>107</td>
<td>2642</td>
</tr>
<tr>
<td>1.1.1.4 On-detector electronics</td>
<td>11</td>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>1.1.1.5 Detector monitoring</td>
<td>4</td>
<td>4</td>
<td>92</td>
</tr>
<tr>
<td>1.1.1.6 Detector assembly</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1.1.1.7 System Engineering</td>
<td>36</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td>1.1.2 L0 Striplet option</td>
<td>23</td>
<td>33</td>
<td>542</td>
</tr>
<tr>
<td>1.1.2.1 Mechanical</td>
<td>7</td>
<td>17</td>
<td>60</td>
</tr>
<tr>
<td>1.1.2.2 Cooling</td>
<td>2</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>1.1.2.3 Silicon Wafers and Focant</td>
<td>10</td>
<td>15</td>
<td>327</td>
</tr>
<tr>
<td>1.1.2.4 On-detector electronics</td>
<td>5</td>
<td>5</td>
<td>108</td>
</tr>
<tr>
<td>1.1.3 L0 MAPS option</td>
<td>106</td>
<td>32</td>
<td>1576</td>
</tr>
<tr>
<td>1.1.3.1 Mechanical</td>
<td>12</td>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td>1.1.3.2 Cooling</td>
<td>2</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>1.1.3.3 MAPS Modules Components</td>
<td>92</td>
<td>12</td>
<td>1560</td>
</tr>
<tr>
<td>1.1.4 L0 Hybrid Pixel option</td>
<td>106</td>
<td>32</td>
<td>1576</td>
</tr>
<tr>
<td>1.1.4.1 Mechanical</td>
<td>12</td>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td>1.1.4.2 Cooling</td>
<td>2</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>1.1.4.3 Hybrid Pixel Modules Components</td>
<td>92</td>
<td>12</td>
<td>1560</td>
</tr>
<tr>
<td>1.2 DCH</td>
<td>165</td>
<td>139</td>
<td>3421</td>
</tr>
<tr>
<td>1.2.1 System engineering</td>
<td>24</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>1.2.2 Endplates</td>
<td>16</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>1.2.3 Inner cylinder</td>
<td>8</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>1.2.4 Outer cylinder</td>
<td>6</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>1.2.5 Wire</td>
<td>4</td>
<td>6</td>
<td>308</td>
</tr>
<tr>
<td>1.2.6 Feedthroughs</td>
<td>9</td>
<td>10</td>
<td>430</td>
</tr>
<tr>
<td>1.2.7 Endplate systems</td>
<td>8</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>1.2.8 Assembly & Stringing</td>
<td>74</td>
<td>96</td>
<td>960</td>
</tr>
<tr>
<td>1.2.9 Gas System</td>
<td>10</td>
<td>5</td>
<td>240</td>
</tr>
<tr>
<td>1.2 A Test</td>
<td>6</td>
<td>5</td>
<td>48</td>
</tr>
</tbody>
</table>

Continued on next page
11.1 Detector Costs

Table 9 – continued from previous page

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 PID</td>
<td>116 236</td>
<td>4928 7138</td>
</tr>
<tr>
<td>1.3.1 DIRC Barrel (Focusing DIRC)</td>
<td>116 236 4928 7138</td>
<td></td>
</tr>
<tr>
<td>1.3.1.1 Radiator Support Structure</td>
<td>4 4 8 2516</td>
<td></td>
</tr>
<tr>
<td>1.3.1.2 Radiator box/FLLOCK assembly</td>
<td>14 40 2387 4515</td>
<td></td>
</tr>
<tr>
<td>1.3.1.3 New Camera mechanical boxes</td>
<td>14 28 258 0</td>
<td></td>
</tr>
<tr>
<td>1.3.1.4 Photodetector assembly</td>
<td>18 32 2207 0</td>
<td></td>
</tr>
<tr>
<td>1.3.1.5 Calibration System</td>
<td>2 4 50 0</td>
<td></td>
</tr>
<tr>
<td>1.3.1.6 Mechanical Utilities</td>
<td>4 8 17 107</td>
<td></td>
</tr>
<tr>
<td>1.3.1.7 System Integration</td>
<td>60 120 0 0</td>
<td></td>
</tr>
<tr>
<td>1.4 EMC</td>
<td>219 360 11022 31574</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Barrel EMC</td>
<td>30 5 205 31574</td>
<td></td>
</tr>
<tr>
<td>1.4.1.1 Crystal Procurement</td>
<td>0 0 0 21742</td>
<td></td>
</tr>
<tr>
<td>1.4.1.2 Light Sensors & Readout</td>
<td>0 0 0 26354</td>
<td></td>
</tr>
<tr>
<td>1.4.1.3 Crystal Support Modules</td>
<td>0 0 0 2875</td>
<td></td>
</tr>
<tr>
<td>1.4.1.4 Barrel Structure</td>
<td>0 0 0 3409</td>
<td></td>
</tr>
<tr>
<td>1.4.1.5 Calibration Systems</td>
<td>0 0 0 650</td>
<td></td>
</tr>
<tr>
<td>1.4.1.6 Project Management</td>
<td>0 0 0 233</td>
<td></td>
</tr>
<tr>
<td>1.4.1.7 Barrel Transport</td>
<td>20 5 205 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Forward EMC</td>
<td>171 312 10478 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2.1 Crystal Procurement</td>
<td>25 102 8437 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2.2 Light Sensors & Readout</td>
<td>47 70 869 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2.3 Crystal Support Modules</td>
<td>26 64 450 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2.4 Barrel Structure</td>
<td>26 52 444 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2.5 Calibration Systems</td>
<td>24 24 138 0</td>
<td></td>
</tr>
<tr>
<td>1.4.2.6 Project Management</td>
<td>24 0 120 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3 Backward EMC</td>
<td>28 43 340 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3.1 Scintillator</td>
<td>2 10 104 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3.2 Radiator</td>
<td>1 4 19 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3.3 Filters</td>
<td>4 4 17 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3.4 Photodetectors</td>
<td>2 5 46 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3.5 Mechanical support</td>
<td>17 15 133 0</td>
<td></td>
</tr>
<tr>
<td>1.4.3.6 Project Management</td>
<td>2 2 24 0</td>
<td></td>
</tr>
<tr>
<td>1.5 IPK</td>
<td>37 184 124 0</td>
<td></td>
</tr>
<tr>
<td>1.5.1 Scintillators</td>
<td>0 0 268 0</td>
<td></td>
</tr>
<tr>
<td>1.5.2 WLS fibers</td>
<td>0 0 362 0</td>
<td></td>
</tr>
<tr>
<td>1.5.3 Photodetectors and PCBs</td>
<td>1 2 685 0</td>
<td></td>
</tr>
<tr>
<td>1.5.4 Mechanics (Production and QC)</td>
<td>16 62 60 0</td>
<td></td>
</tr>
<tr>
<td>1.5.5 Module Installation</td>
<td>20 120 0 0</td>
<td></td>
</tr>
<tr>
<td>1.6 Magnet</td>
<td>93 59 3767 10210</td>
<td></td>
</tr>
<tr>
<td>1.6.1 System Management</td>
<td>36 0 0 612</td>
<td></td>
</tr>
<tr>
<td>1.6.2 Superconducting solenoid</td>
<td>0 0 2421 0</td>
<td></td>
</tr>
<tr>
<td>1.6.3 Mag. Power/Protection</td>
<td>0 0 184 0</td>
<td></td>
</tr>
<tr>
<td>1.6.4 Cryogenics</td>
<td>34 36 1753 0</td>
<td></td>
</tr>
<tr>
<td>1.6.5 Cryo monitor/Control</td>
<td>17 11 214 0</td>
<td></td>
</tr>
<tr>
<td>1.6.6 Flux return</td>
<td>6 12 1800 6481</td>
<td></td>
</tr>
<tr>
<td>1.6.7 Installation/test equipment</td>
<td>0 0 515 0</td>
<td></td>
</tr>
<tr>
<td>1.7 Electronics</td>
<td>994 342 6234 0</td>
<td></td>
</tr>
<tr>
<td>1.7.1 SVT</td>
<td>11 21 563 0</td>
<td></td>
</tr>
<tr>
<td>1.7.2 DCH</td>
<td>74 76 1669 0</td>
<td></td>
</tr>
<tr>
<td>1.7.3 PID Barrel (32k channels)</td>
<td>136 18 612 0</td>
<td></td>
</tr>
<tr>
<td>1.7.4 EMC</td>
<td>110 164 2728 0</td>
<td></td>
</tr>
<tr>
<td>1.7.5 IFR</td>
<td>38 51 1487 0</td>
<td></td>
</tr>
<tr>
<td>1.7.6 Infrastructure</td>
<td>4 12 314 0</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page

SUPERB Detector Progress Report
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7 Systems Engineering</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.7.8 Hardware Trigger</td>
<td>97</td>
<td>0</td>
<td>678</td>
</tr>
<tr>
<td>1.7.9 ETD (without Trigger)</td>
<td>512</td>
<td>0</td>
<td>1188</td>
</tr>
<tr>
<td>1.8 Online Systems</td>
<td>282</td>
<td>0</td>
<td>1419</td>
</tr>
<tr>
<td>1.8.1 Event Flow</td>
<td>270</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>1.8.2 Front Control / Slow Controls / ECS</td>
<td>168</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.8.3 Infrastructure</td>
<td>48</td>
<td>12</td>
<td>208</td>
</tr>
<tr>
<td>1.8.4 Software Triggers</td>
<td>72</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>1.8.5 Coordination and Commission</td>
<td>24</td>
<td>9</td>
<td>83</td>
</tr>
<tr>
<td>1.9.1 Disassembly</td>
<td>95</td>
<td>161</td>
<td>612</td>
</tr>
<tr>
<td>1.9.2 Assembly</td>
<td>222</td>
<td>463</td>
<td>2094</td>
</tr>
<tr>
<td>1.9.3 Structural analysis</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.9.2.1 Project Management</td>
<td>720</td>
<td>0</td>
<td>216</td>
</tr>
<tr>
<td>1.9.3.1 Project engineering</td>
<td>300</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>1.9.3.2 Budget, Schedule and Procurement</td>
<td>300</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1.9.4 R & D</td>
<td>120</td>
<td>0</td>
<td>48</td>
</tr>
</tbody>
</table>
11.2 Basis of Estimate

Vertex Detector and Tracker: System cost is estimated based on experience with the Babar detector and vendor quotes. A detailed estimate is provided for the cost of the main detector (layers-1 to 5). The costs associated with layer-0 are analyzed separately. The costing model assumes that a striplet detector will be installed initially—followed by a second generation upgrade to a pixel detector, which could either be a MAPs or hybrid pixel device. Substantial R&D on these new technologies is needed in either case before such a detector can be built. The total SVT cost is obtained by summing the baseline detector cost (with striplets for layer0) to the MAPS layer0 cost.

Drift Chamber: The DCH costing model is based on a straightforward extrapolation of the actual costs of the existing Babar chamber to 2018, since, as discussed in sec. 4 the main design elements are comparable, and many related components, such as the length of wire, number of feedthroughs, duration of wire stringing, etc., can be reliably estimated. Although the cell layout is still being finalized, the total cell count will likely be about 25% larger. The endplates will be fabricated from carbon fiber composites instead of aluminum. Though this will require a somewhat longer period of R&D and engineering design, it is unlikely to result in significantly larger production costs for the final endplates. The DCH electronics on Table 9 assumes standard readout as discussed in Sec. 8.4.2. A cluster counting readout option is under R & D, but is not yet sufficiently advanced that costs can be provided.

Particle Identification: Barrel PID costs and replacement values are derived from Babar costs as extrapolated to 2018, with updated quotes from vendors. The main new component of the barrel FDIRC is its new camera. For each module, the optical portion consists of the focusing block (FBLOCK), an addition to the wedge (the New Wedge) and possibly a Micro-Wedge. We have contacted about 12 optics companies and received 4 preliminary bids. We use the average bid in the present budget. We hope to continue to refine the values through further R&D. The photon detector cost estimate is based on the Hamamatsu bid for 600 H-8500 MaPMTs. No budget estimate is included at this time for a forward endcap PID. Though several options are being studied, their performance and cost are yet to be well understood, and the overall performance gains and losses of including a forward PID in the detector are as yet unsettled. However, as a general principle, given the limited solid angle covered by such a device, the cost of a forward PID detector must be a modest fraction of the barrel.

Electromagnetic Calorimeter: There are four components to the calorimeter cost: (1) the barrel calorimeter from Babar; (2) the forward calorimeter; (3) the replacement of the front-end preamps in the barrel; and (4) the backward calorimeter. As described in the calorimeter section, there are a number of uncertainties remaining in the design. The present estimate represents an estimate of costs for our baseline design. The reuse value of the barrel calorimeter is based on the actual cost of the barrel escalated for inflation from the time of construction to the current year. Manpower estimates for the barrel construction were obtained by using the costs for ED&I and Labor, knowledge of the mix of engineers and technicians who contributed to the design and fabrication of individual components, and knowledge of their salaries. Manpower and costs for engineering and tooling required for the removal and transport of the barrel EMC from SLAC are engineering estimates. The main cost driver for the forward endcap is the cost of LYSO crystals. This is estimated based on guideline quotes from vendors. The next largest element is the APD photodetectors, with a cost based on a quote from the vendor. The estimate for the crystal support modules is based on costs for the beam test prototype.
Estimates for the remaining smaller items are based on estimator experience and judgment. The cost estimate for replacing the preamplifiers in the barrel calorimeter is based on the endcap preamplifier cost as well as the cost of dealing with the mechanical issues.

For the backward endcap, the scintillator, lead, wavelength-shifting fiber, and readout MPPC costs, as well as some other minor materials, are all based on vendor quotes. Other items are based on experience and estimator judgment.

Instrumented Flux Return: The IFR cost is based on quotations received for the prototype construction appropriately scaled to the real detector dimension. While the active part of the detector is quite inexpensive the total cost is driven by the electronics and the photodetectors. The current baseline design allows the reuse of the BaBar iron structure with some modification that needs to be taken into account. Manpower and cost for engineering and module installation is based on the BaBar experience.

Electronics, Trigger, DAQ and Online: The cost for the Electronics and Trigger subsystems is estimated with a combination of scaling from the BaBar experience and from direct estimates. For items expected to be similar to those used in BaBar (such as infrastructure, high and low voltage or the L1 trigger) costs are scaled from BaBar. The same methodology is used to estimate EDIA and Labor costs for the Online system. However, some modifications based on “lessons learned” are applied. In particular, we are including costs for development work that, in our opinion, should have been centralized across sub-detectors in BaBar (but wasn’t) and work that should have been done upfront but was only done or completed as part of BaBar Online system upgrades.

The readout systems for which the higher data rates require redesigned electronics are estimated from the number of different components and printed circuit boards, and their associated chip and board counts. This methodology is also used for the possible new detectors (forward EMC, backward EMC, forward PID) and for the elements of the overall system architecture that are very different than BaBar.

The hardware cost estimates for the Online computing system (including the HLT farm) are, very conservatively, based on the current prices of hardware necessary to build the system, with the assumption that Moore’s Law will result in future systems with the same unit costs but higher performance. This is justified by our observation that for COTS components, constraints from system design, topology and networking are more likely to set minimum requirements for the number of devices than for the per-device performance.

Transportation, installation, and commissioning: Installation and commissioning estimates, including disassembling and reassembling BaBar are based on the BaBar experience, and engineering estimates using a detailed schedule of activities and corresponding manpower requirement.

Although transportation costs are expected to be significant, they are not included in this estimates, because of lack of detailed information at the time of writing.

11.3 Schedule

The detector construction schedule is shown in Fig. 48. The construction starts with design finalization and a technical design report, after which the fabrication of the detector subsystems can proceed, in parallel. At the same time the BaBar detector is disassembled, transported to the new site, and reassembled. The detector subsystems will be installed in sequence. An extended detector commissioning period, including a cosmic ray run, will follow to ensure proper operation and calibration of the detector. The total construction and commissioning time is estimated to be a little over 5 years.
References

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Approval</td>
<td>0 wks</td>
</tr>
<tr>
<td>2</td>
<td>Detector Design & Construction</td>
<td>182 wks</td>
</tr>
<tr>
<td>3</td>
<td>Design SVT</td>
<td>52 wks</td>
</tr>
<tr>
<td>4</td>
<td>Construct SVT</td>
<td>130 wks</td>
</tr>
<tr>
<td>5</td>
<td>Design DCH</td>
<td>52 wks</td>
</tr>
<tr>
<td>6</td>
<td>Construct DCH</td>
<td>130 wks</td>
</tr>
<tr>
<td>7</td>
<td>Design PID</td>
<td>52 wks</td>
</tr>
<tr>
<td>8</td>
<td>Construct PID</td>
<td>130 wks</td>
</tr>
<tr>
<td>9</td>
<td>Design PID forward EMC</td>
<td>52 wks</td>
</tr>
<tr>
<td>10</td>
<td>Construct PID forward EMC</td>
<td>130 wks</td>
</tr>
<tr>
<td>11</td>
<td>Design IFR</td>
<td>52 wks</td>
</tr>
<tr>
<td>12</td>
<td>Construct IFR</td>
<td>130 wks</td>
</tr>
<tr>
<td>13</td>
<td>Detector Technical Design Report</td>
<td>0 wks</td>
</tr>
<tr>
<td>14</td>
<td>Dismantle & Move Babar</td>
<td>91 wks</td>
</tr>
<tr>
<td>15</td>
<td>Design Tooling</td>
<td>26 wks</td>
</tr>
<tr>
<td>16</td>
<td>Dismantle Babar</td>
<td>52 wks</td>
</tr>
<tr>
<td>17</td>
<td>Component transportation</td>
<td>26 wks</td>
</tr>
<tr>
<td>18</td>
<td>Detector Installation & Commissioning</td>
<td>198 wks</td>
</tr>
<tr>
<td>19</td>
<td>Installation steek & IFR</td>
<td>52 wks</td>
</tr>
<tr>
<td>20</td>
<td>Installation magnet</td>
<td>13 wks</td>
</tr>
<tr>
<td>21</td>
<td>Installation IFR</td>
<td>8 wks</td>
</tr>
<tr>
<td>22</td>
<td>Installation EMC</td>
<td>8 wks</td>
</tr>
<tr>
<td>23</td>
<td>Installation PID</td>
<td>8 wks</td>
</tr>
<tr>
<td>24</td>
<td>Installation DCH</td>
<td>8 wks</td>
</tr>
<tr>
<td>25</td>
<td>Installation SVT</td>
<td>8 wks</td>
</tr>
<tr>
<td>26</td>
<td>Commission</td>
<td>26 wks</td>
</tr>
<tr>
<td>27</td>
<td>Cosmic Ray test</td>
<td>26 wks</td>
</tr>
<tr>
<td>28</td>
<td>Commission on beam</td>
<td>15 wks</td>
</tr>
<tr>
<td>29</td>
<td>Detector ready for electrons</td>
<td>0 wks</td>
</tr>
</tbody>
</table>

Figure 48: Schedule for the construction of the SuperB detector.