Gyroscopes

- basic precession
- precession
- nutation

Basic picture

Bike tire demo first

Recall \(\vec{\tau} = \frac{d\vec{L}}{dt} \) (cf. \(\vec{F} = \frac{d\vec{\dot{r}}}{dt} \))

So, in time \(dt \):

\[\vec{L} = \vec{L}_0 + \vec{\tau} dt \]

\[\vec{L} \perp \vec{L}_0 \text{ always} \]

(by construction of system)

\[\Rightarrow |\vec{L}| = \text{const.} \]

\(\vec{L}(t) \) describes a circle:

The circular motion resulting from \(\vec{\tau} \) on \(\vec{L} \) is called "precession".
Notice, in time dt:

$$\frac{dl}{dt} = L \frac{d\phi}{dt}$$

or

$$\frac{dl}{dt} = L \frac{d\phi}{dt}$$

rate of precession

$$\dot{\Omega} = \frac{d\phi}{dt}$$

(Ω = omega)

$$\Rightarrow \dot{\Omega} = \frac{\dot{\phi}}{L}$$

and with vectors

$$\dot{r} = \hat{\Omega} \times \dot{r}$$

"$\sin \theta$" part of \dot{r} works:

Here, $dL = d\phi \cdot L \sin \theta$

radius of circle made by tip of L

$$\Rightarrow \frac{dL}{dt} = \dot{\phi} L \sin \theta$$

$$\dot{r} = \hat{\Omega} \times \dot{r}$$

works.

Compare with circular centripetal motion

\vec{F} by construction & \vec{F} fixed

\Rightarrow circular motion

if $\dot{\phi} = 0$, mass "falls" inward due to \vec{F}, but that's a special case.

$\vec{F} = \frac{d\vec{r}}{dt}$

so resulting motion depends on what \vec{F} is as well as \vec{F}.
with \vec{c}, \vec{z}:

$\vec{c} \perp \vec{z}$ always; \vec{c} describes a circle.

If $L_z = 0$, system "falls" in the "intuitive" way, but that, too, is a special case. $\vec{c} = \frac{dL_z}{dt}$, so motion depends on L_z and \vec{c}.

Energy & L_z conservation

precessional motion requires $KE = \frac{1}{2} I_{p\theta} \Omega^2$

$\rightarrow KE$ comes from potential released upon falling a little bit:

$\rightarrow L_z \rightarrow L \rightarrow \vec{L}$

mgh provides energy for precession.

Also:

\[\begin{align*}
\text{before} & \quad \rightarrow L_z \\
\text{after} & \quad \rightarrow L_z
\end{align*}\]

If L_y went from 0 to not 0, a torque would have been required, but \vec{c} a torque in \vec{z} direction.

The precessional motion, though, also counts in L_z, and

$L_y + I_{p\theta} \Omega = 0 \quad \rightarrow$ precessional angular momenting exactly balances the "extra" vertical angular momentum from the force
Can use forces & torque to understand gyro systems, or can use E/L arguments. The latter is often easier.

Demos

- top
- Earth as gyro:
 - fancy gyro

\[|F_1| > |F_2| \Rightarrow \text{torque} \Rightarrow \text{precession} \quad (\Omega = \frac{2\pi}{26,000 \text{yr}}) \]

Nutrition

- stable height, smooth precession
- But if you "drop" it, will overshoot the equilibrium height \(\Rightarrow \text{oscillation about equilibrium height} \) (not S.H.O. !)

Overshoots \(\Rightarrow \Omega \text{ goes up to balance by from wheel.}
\text{On way back up (due to insufficient torque to maintain \(\Omega \),) returns to starting height: } \Omega = 0 \text{ briefly.} \)
Can superimpose an \(\vec{\Omega}_0 \) on the system

\[\text{or} \quad \vec{\Omega}_0 = 0 \]

\(\vec{\Omega}_0 \) in the same direction as \(\vec{J}_\text{precess} \)

\(\vec{\Omega}_0 \) opposite to \(\vec{J}_\text{precess} \)

Aside: Free rotation of complex objects

"torque free" precession

Demo: Spinning things in the air