Position, velocity, acceleration
Freefall
2D motion
Projectiles

Position, velocity:

Velocity = rate of change in position

Over \([t_1, t_2]\), define "average velocity" as:

\[\bar{v} = \frac{x_2 - x_1}{t_2 - t_1} \]

For velocity at a specific time \(t\), we use calculus:

\[v(t) = \frac{dx}{dt} = \frac{d}{dt} x(t) = \frac{d^2x}{dt^2} = a \]

So, position: \(x\)
velocity: rate of change of position
acceleration: rate of change of velocity

The "(t)" part is left implicit sometimes.
\(x(t) \) contains all the information, but sometimes you know \(a \) or \(v \) and want to find \(x \).

For instance...

Free-fall

* Dropping demos, including feather & penny in vacuum chamber

\[
a(t) = a = -g \quad \text{on Earth}
\]

\[\uparrow \text{up} \quad 9.8 \text{ m/s}^2\]

* Careful!

If \(a(t) = \text{const.} \), what's \(v(t) \), \(x(t) \)? Calculus:

\[
v(t) = \int a(t) \, dt = \int a_0 \, dt = a_0 t + \text{const}
\]

\[\uparrow \text{"initial velocity"}
\]

since \(v(t=0) = v_0 \)

Then:

\[
x(t) = \int v(t) \, dt = \int (a_0 t + v_0) \, dt
\]

\[\uparrow \text{"initial position"}
\]

Generic result for \(a = \text{constant} \):

\(x(t) \) tells us everything about the path.
Example

\[y(t) = y_0 + v_0 t + \frac{1}{2} g t^2 \]

\[y(t) = y_0 - \frac{1}{2} g t^2 \]

\[t_{\text{crash}} = \text{when } y(t) = 0, \text{ so:} \]

\[0 = y_0 - \frac{1}{2} g (t_{\text{crash}})^2 \]

\[t_{\text{crash}} = \sqrt{\frac{2 y_0}{g}} \]

\[t_{\text{crash}} = \sqrt{\frac{2 (10\text{ m})}{9.8\text{ m/s}^2}} \]

\[t_{\text{crash}} = 1.43 \text{ s} \]

\[v(t) = \frac{dy}{dt} = -gt \]

\[v(t_{\text{crash}}) = (-9.8\text{ m/s}^2)(1.43\text{ s}) \]

\[v(t_{\text{crash}}) = -14.0\text{ m/s} = -31.3\text{ mph} \]

2D motion

"static", "moving" are relative concepts. Can only say bull is moving relative to observer.

Also: laws of nature do not depend on motion (non-accelerated) system or observer.

So →
Can describe ball from observer's point of view:

- Ball falling with observer moving left at speed v OR
- Stationary observer watching ball falling while also moving right with speed v

Also: rightward motion of ball didn't mess up downward motion.

Demo: car on track

Trajectories

Take some freefall system:

- $y(t) = \frac{1}{2}at^2 + v_{0y}t + y_0$ \hspace{1cm} (9)
 - a = initial vel. in y direction

If also some initial x velocity v_{0x}:

- $x(t) = v_{0x}t + x_0$

What is $y(t)$?
(The trajectory)
Choose more convenient coordinate system:

\[
\begin{align*}
X &= V_{x0}t \\
Y &= -\frac{1}{2}gt^2 + V_{y0}t
\end{align*}
\]

\[\Rightarrow \quad \text{Solving:} \quad t = \frac{X}{V_{x0}} \quad \text{and} \quad Y = \left[-\frac{1}{2} \frac{g}{V_{x0}^2} \right] X^2 + \left[\frac{V_{y0}}{V_{x0}} \right] X \quad \text{a parabola!}
\]

\[\uparrow \quad \text{now implicitly} \quad "Y(X)" \]

Can ask questions about path:

What's the "range" \(x_R \)?

Need \(y = 0 \), so

\[\begin{align*}
\Delta &= \left[-\frac{1}{2} \frac{g}{V_{x0}^2} \right] X^2 + \left[\frac{V_{y0}}{V_{x0}} \right] X \\
\Rightarrow \quad &X = 0 \\
\text{or} \\
&X = \frac{2V_{x0}V_{y0}}{g} = x_R
\end{align*}\]

What angle \(\theta \) maximizes \(x_R \)?

\[V_x = V_0 \cos \theta \quad \text{and} \quad V_y = V_0 \sin \theta\]

\[\Rightarrow \quad x_R = \frac{2V_0^2 \cos \theta \sin \theta}{g}\]

\[= \frac{V_0^2}{g} \sin 2\theta \quad \Rightarrow \quad x_R \text{ max if } \sin 2\theta = 1 \]

\[\Rightarrow \theta = 45^\circ\]
Or, with calculus:

\[\frac{dx_2}{d\theta} = 0 \Rightarrow \frac{2v_0^2}{g} \cos 2\theta = 0 \]

\[\Rightarrow \cos 2\theta = 0 \]

\[\Rightarrow \theta = 45^\circ \]

\[\frac{d^2x_2}{d\theta^2} = \frac{-4v_0^2 \sin 2\theta}{g} \bigg|_{\theta=45^\circ} < 0 \Rightarrow \text{maximum, not minimum} \]

\[\theta \]

A demo: monkey shoot

<table>
<thead>
<tr>
<th>no gravity</th>
<th>with gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gravity adds \(\frac{1}{2}gt^2 \) to both \(y(t) \) functions, so will still collide