Emission Spectra of LSO and LYSO Crystal Scintillators Excited by UV Light, X-ray and γ-ray

Liyuan Zhang, Rihua Mao and Ren-yuan Zhu

California Institute of Technology
Introduction

We reported at Puerto Rico (NSS05, N12-6) a comparison of light output of large size (2.5 x 2.5 x 20 cm) LSO and LYSO samples, and found that a CTI LSO has a higher light output with APD readout, but not with PMT readout. This anomaly disappeared after γ-ray irradiation to 1 Mrad.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>PMT: R1306, HV=-1100V</th>
<th>Gate: 200 ns</th>
<th>E.R.:</th>
<th>ADC</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIC-BGO</td>
<td></td>
<td></td>
<td>15.4±0.2%</td>
<td></td>
<td>Na-22</td>
</tr>
<tr>
<td>CTI-LSO</td>
<td></td>
<td></td>
<td>11.3±0.2%</td>
<td></td>
<td>Na-22</td>
</tr>
<tr>
<td>CPI-LSO</td>
<td></td>
<td></td>
<td>22.4±0.3%</td>
<td></td>
<td>Na-22</td>
</tr>
<tr>
<td>SG-LSO</td>
<td></td>
<td></td>
<td>10.6±0.2%</td>
<td></td>
<td>Na-22</td>
</tr>
</tbody>
</table>

- **SIC-BGO-L**
 - 2 x Hamamatsu S8664-55
 - HV = 400 V, τ = 250 ns
 - No obvious signal can be detected

- **CTI-LSO-L**
 - pedestal = 118 ADC
 - peak = 652 ADC
 - σ = 71 ADC
 - L.O. = 2490 p.e./Mev

- **CPI-LSO-L**
 - pedestal = 118 ADC
 - peak = 415 ADC
 - σ = 78 ADC
 - L.O. = 1380 p.e./Mev

- **SG-LSO-L**
 - pedestal = 118 ADC
 - peak = 504 ADC
 - σ = 74 ADC
 - L.O. = 1800 p.e./Mev
Quantum efficiency and Emission

Why?
The LSO sample had an emission peaked at longer wavelength under γ-ray excitation, and the emission was changed after γ-ray irradiations.

Can we prove it?
Six Large LSO and LYSO Samples

Three CTI LSO samples are provided by Chuck Melcher.

Three LYSO samples are purchased from Saint-Gobain.
UV, X-ray & γ-ray Excited Emission

Photo-luminescence measured with $\theta = 10^\circ$: No internal absorption

UV and X-ray excited emission

- X-ray tube
- UV lamp and monochromator
- Hitachi F4500
- Monochromator and PMT

γ-ray excited emission

- Co60
- Monochromator (Oriel 77250) and PMT (R2059)
- Merlin system (Oriel 70103)
System Checks

UV (θ=0°), X-ray and γ-ray excited emission spectra are consistent. UV (θ=10°) excited emission has a blue shift because of no absorption.
UV (θ=0º) and γ-ray excited emission spectra are consistent. UV (θ=10º) excited emission has a strong blue shift (See N49-1). X-ray excited emission is slightly narrow. Why?
The narrow X-ray excited emission spectra of LYSO may be explained by a surface effect since X-ray does not penetrate.

<table>
<thead>
<tr>
<th>Excitation Type</th>
<th>Attenuation Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV excitation (3-6 eV)</td>
<td>100~700 μm</td>
</tr>
<tr>
<td>X-ray (8-30 keV)</td>
<td>~10 μm</td>
</tr>
<tr>
<td>γ-ray (Co60) (~1.2 MeV)</td>
<td>1.14 cm</td>
</tr>
</tbody>
</table>

![Graph showing emission spectra and excitation types](image-url)
All emission spectra are similar to that of LYSO, except that γ-ray excited emission has a “red shift”, which disappeared after irradiations with γ-ray.
γ-Ray Irradiation on Sample’s ID End

Lead shield

Co60

Gamma Ray

CTI-LSO-L3

SG-LYSO-L3

ID End received
~5000 rad
The emission peak of sample’s irradiated ID end has a \(~15\) nm “blue” shift.
LYSO: γ -Ray Excited Emission Spectra

The emission peak of sample’s ID (irradiated) end has NO “blue” shift

Before irradiation

After irradiation

SG-LYSO-L 3
As received

γ-ray emission:
- ID end
- NID end

SG-LYSO-L 3
After 5x10^3 rad irradiation @ ID end.

γ-ray emission:
- ID end
- NID end
The irradiated end (ID) has no change in decay time. Its light output degradation is half of that of the NID end because of the emission “blue shift”.

Irradiated Half

ID end

- **Before I.R.**
 - Light Output (p.e./MeV): 1140

- **After I.R.**
 - Light Output (p.e./MeV): 1080
 - Degradation: -5.3%

Non-irradiated

NID end

- **Before I.R.**
 - Light Output (p.e./MeV): 1150

- **After I.R.**
 - Light Output (p.e./MeV): 1010
 - Degradation: -12.2%
The emission “blue shift” of the irradiated end causes a relative larger LO for the PMT readout.

Before irradiation

CTI-LSO-L 3
As received
A (NID) end coupled to PMT

\[\delta = (-0.1 \pm 1.0) \]
Average L.O. = 1100 p.e./MeV (300 ns)

CTI-LSO-L 3
As received
B (ID) end coupled to PMT

\[\delta = (-0.8 \pm 1.1) \]
Average L.O. = 1110 p.e./MeV (300 ns)

After irradiation

CTI-LSO-L 3
5 X 10^3 rad irradiation @ ID end
A (NID) end coupled to PMT

\[\delta = (2.3 \pm 1.0) \]
Average L.O. = 1020 p.e./MeV (300 ns)

CTI-LSO-L 3
5 X 10^3 rad irradiation @ ID end
B (ID) end coupled to PMT

\[\delta = (-4.3 \pm 1.0) \]
Average L.O. = 1030 p.e./MeV (300 ns)
LYSO Uniformity with PMT Readout

No significant variations in the light output and light response uniformity for the PMT readout

Before irradiation

SG-LYSO-L 3 After 300°C annealing
A (NID) end coupled to PMT

$\delta = (-3.1 \pm 1.0)$
Average L.O. = 1300 p.e./MeV

SG-LYSO-L 3 After 300°C annealing
B (ID) end coupled to PMT

$\delta = (-1.8 \pm 1.0)$
Average L.O. = 1300 p.e./MeV

After irradiation

SG-LYSO-L 3 After 10^4 rad irradiation
A (NID) end coupled to PMT

$\delta = (-4.0 \pm 1.0)$
Average L.O. = 1200 p.e./MeV

SG-LYSO-L 3 After 10^4 rad irradiation
B (ID) end coupled to PMT

$\delta = (-2.2 \pm 1.0)$
Average L.O. = 1210 p.e./MeV
The γ-ray irradiated half shows less long wavelength emission when excited at 325 nm and 380 nm.
UV Excited Emission Spectra of Two Halves of the LYSO Sample

The γ -ray irradiated half shows consistent emission as the non irradiated half when excited at 325 nm and 380 nm.
Ce\(^{3+}\) Luminescence Centers in LSO

Ce1: two regular Lu\(^{3+}\) crystallographic sites, ex: 360 nm, em: 430 nm
Ce2: irregular sites, proposed “interstitial site”, ex: 325 nm, em: 500 nm
Conclusions

- A strong blue shift of the photo luminescence (θ=10°) in LSO/LYSO is attributed to its self absorption.
- A narrow X-ray excited emission spectra in LSO/LYSO seems caused by a surface effect.
- A broader γ-ray excited emission spectrum with a “red shift” as compared to the X-ray and UV excited emission spectra is observed in large size LSO samples. This shift disappeared after γ-ray irradiations. This observation consists with the light output and uniformity data and with what reported in NSS05 at Puerto Rico.
- No such shift was observed in large size LYSO samples.
- We tentatively attribute this shift to the contribution of the “irregular” sites of Ce³⁺ (the component around 450 nm). The fact that it can be “cured” more or less by γ-ray irradiations supports that this site is a defect perturbed irregular site of Ce³⁺.