Evaluation of Mass Produced PWO Crystals

Ren-yuan Zhu
California Institute of Technology
Randomly Selected PWO Samples

BTCP: 20 from 1st batch (100) for CMS endcaps
SIC: 20 from production batch for PrimEx

BTCP: 28.5$^2 \times 220 \times 30.0^2$ mm

SIC: 22$^2 \times 230 \times 22^2$ mm
All crystals went through (1) thermal annealing at 200°C, (2) irradiations by γ-ray at 15, 400 and 9k rad/h until equilibrium and (3) recovery.

Properties measured: Transmittance, emission and excitation spectrum, light output, decay kinetics and light response uniformity, as well as their degradation, radiation induced color center and emission weighted radiation induced absorption coefficients.

Light output degradation was only measured at 15 rad/h because of limited light output: less than 8 p.e./MeV for BTCP samples.
Thermal Annealing

- Rigorous temperature control both in amplitude and slope:
 - From RT to 200°C: 200 minutes;
 - Maintain at 200°C: 240 minutes;
 - From 200°C to 25°C: 400 minutes.

- Crystals are kept in dark at RT (18°C) after annealing. The minimum time between annealing and the 1st measurement is 48 hours.
Transmittance and Birefringence

a axis: better L.T., but non-isotropic transverse T. Both approaching theoretical limit

Czochralski: grown along the *a axis*
Bridgman: grown along the *c axis*

BTCP-1971

- 200°C annealing 4 hour
 - Transverse (x)
 - Transverse (y)
 - Longitudinal (z)

- Calculated longitudinal T of CMS PWO crystal
 - // c axis,
 - ⊥ c axis, unpolarized light
 - ⊥ c axis, e-polarized light

SIC-U517 (21.6 cm)

- 200°C annealing 4 hour
 - Transverse (x)
 - Transverse (y)
 - Longitudinal (z)

- Calculated longitudinal T of CMS PWO crystal
 - // c axis,
 - ⊥ c axis, unpolarized light
 - ⊥ c axis, e-polarized light
Light Output and Decay Kinetics

SIC samples have higher light output
Both are fast: 84 and 96% of light in 50 and 100 ns
Comparison of L.T. and Light Yield

BTCP: higher l. transmittance, partly due to birefringence

SIC: higher light yield, the reason is unknown
Caltech γ-ray Irradiation Facilities

Open 50 curie Co-60: 15, 100 and 400 rad/h

Closed 2,000 curie Cs-137: 9k rad/h at center, up to 36k rad/h
Photoluminescence

No variation in either excitation or emission spectrum
No damage in scintillation mechanism
No Variation in Light Response Uniformity

The response \((y)\) along the axis was fit to a linear function

\[
\frac{y}{y_{\text{mid}}} = 1 + \delta \left(\frac{x}{x_{\text{mid}}} - 1 \right)
\]
Light Output Degradation

5-15% and 15-30% light output loss under 15 and 500 rad/h

Damage is dose rate dependent
Damage in Longitudinal Transmittance

Radiation induced absorption caused by CC formation

BTCP-2466

- 200°C annealing
- 15 rad/h (65 h)
- 100 rad/h (63 h)
- 400 rad/h (62 h)
- 9000 rad/h (10 h)
- 35000 rad/h (6.5 h)

SIC-T5

- 200°C annealing
- 15 rad/h (108 h)
- 400 rad/h (72 h)
- 9000 rad/h (24 h)
Comparison of Radiation Damage

SIC samples seem more radiation hard

![Graphs showing comparison of radiation damage between BTCP-PWO and SIC-PWO samples.](image)

- **BTCP-PWO**
 - Mean: 16.86
 - RMS: 6.484

- **SIC-PWO**
 - Mean: 11.67
 - RMS: 2.341

- **Chisquared/ndf**
 - BTCP-PWO: $\chi^2/ndf = 1.489 / 3$
 - SIC-PWO: $\chi^2/ndf = 0.1179 / 1$

- **Parameters**
 - Constant: 4.879 (BTCP-PWO), 9.541 (SIC-PWO)
 - Mean: 14.79 (BTCP-PWO), 11.22 (SIC-PWO)
 - Sigma: 5.277 (BTCP-PWO), 3.513 (SIC-PWO)

- **L.O. loss under 15 rad/h (%)**
 - BTCP-PWO: [Histogram with data]
 - SIC-PWO: [Histogram with data]

- **Relative L.T. loss @ 440 nm (%)**
 - BTCP-PWO: [Histogram with data]
 - SIC-PWO: [Histogram with data]
Comparison of Transmittance Loss

SIC samples less diverse: Bridgman technology
Some BTCP samples are very rad hard at high doses
Radiation Induced Color Center Density

RIAC or radiation induced color center density can be calculated precisely by using longitudinal transmittance (0.2%)\n
\[\text{RIAC or } D_{\text{Color-Center}} = \frac{1}{LAL}; \]

\[LAL = \frac{\ell}{\ln\left\{\frac{T(1 - T_s)^2}{\sqrt{4T_s^4 + T^2(1 - T_s)^2 - 2T_s^2}}\right\}} \]

where \(T \) is transmittance measured along crystal length \(\ell \) and \(T_s \) is the theoretical transmittance without internal absorption:

\[T_s = (1 - R)^2 + R^2(1 - R)^2 + \ldots = \frac{(1 - R)}{(1 + R)}, \text{ with} \]

\[R = \frac{(n_{\text{crystal}} - n_{\text{air}})^2}{(n_{\text{crystal}} + n_{\text{air}})^2}. \]
Emission Weighted RIAC

\[EWRIAC = \frac{\int Riac(\lambda)Em(\lambda)d\lambda}{\int Em(\lambda)d\lambda} \]

a good measure of rad. damage

BTCP-2467
- 15 rad/h
- \(A_1 = 0.01 \) \(\sigma_{11} = 2.30 \) \(\sigma_1 = 0.35 \)
- \(A_2 = 0.16 \) \(\sigma_{21} = 3.07 \) \(\sigma_2 = 0.42 \)
- \(\chi^2/DOF = 0.2 \)

EWRIAC = 0.12

SIC-LS615
- 400 rad/h
- \(A_1 = 0.08 \) \(\sigma_{11} = 2.32 \) \(\sigma_1 = 0.2 \)
- \(A_2 = 0.26 \) \(\sigma_{21} = 3.15 \) \(\sigma_2 = 0.76 \)
- \(\chi^2/DOF = 0.2 \)

EWRIAC = 0.12

BTCP-2467
- 400 rad/h
- \(A_1 = 0.13 \) \(\sigma_{11} = 2.30 \) \(\sigma_1 = 0.35 \)
- \(A_2 = 0.39 \) \(\sigma_{21} = 3.07 \) \(\sigma_2 = 0.42 \)
- \(\chi^2/DOF = 0.8 \)

EWRIAC = 0.35

SIC-LS615
- 9000 rad/h
- \(A_1 = 0.13 \) \(\sigma_{11} = 2.32 \) \(\sigma_1 = 0.2 \)
- \(A_2 = 0.54 \) \(\sigma_{21} = 3.15 \) \(\sigma_2 = 0.76 \)
- \(\chi^2/DOF = 0.4 \)

EWRIAC = 0.42

BTCP-2467
- 9000 rad/h
- \(A_1 = 0.16 \) \(\sigma_{11} = 2.30 \) \(\sigma_1 = 0.35 \)
- \(A_2 = 0.47 \) \(\sigma_{21} = 3.07 \) \(\sigma_2 = 0.42 \)
- \(\chi^2/DOF = 0.5 \)

EWRIAC = 0.50
EWRIAC (1/m) and Normalized r.m.s.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>15 rad/h</th>
<th>400 rad/h</th>
<th>9.000 rad/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTCP</td>
<td>0.16 (45%)</td>
<td>0.69 (37%)</td>
<td>1.43 (50%)</td>
</tr>
<tr>
<td>SIC</td>
<td>0.10 (33%)</td>
<td>0.51 (32%)</td>
<td>1.16 (48%)</td>
</tr>
</tbody>
</table>

Graphs

- **BTCP-PWO**
 - Emission weighted RIAC. (m⁻¹)
 - Dose rate (rad/h)

- **SIC-PWO**
 - Emission weighted RIAC. (m⁻¹)
 - Dose rate (rad/h)
L. T. Loss versus Initial L.T. @ 360 nm

No correlation
EWRIAC versus Initial L.T. @ 440 nm

No correlation
Recovery Speed and Time Constant

Recovery at 18°C in 160 days can be described by two time constants: few tens hours and few thousands hours.

BTCP-2457
- After 9000 rad/h in Equilibrium
- \(\frac{T}{T_0} = 0.811 + 0.099(1 - e^{-t/30.07}) \)

SIC-T32
- After 9000 rad/h in Equilibrium
- \(\frac{T}{T_0} = 0.795 + 0.098(1 - e^{-t/161.76}) \)
Summary

- Investigation on 20 crystals each from two vendors shows that SIC samples are more consistent (Bridgman).
- Samples from both vendors have very good transmittance and fast light output. It is not clear why SIC samples produce more (58%) light.
- No correlations between radiation hardness and initial longitudinal transmittance was observed.
- Current mass-produced PWO crystals are radiation hard enough for environment of up to a few hundreds rad/h by selection. R&D is needed if thousands rad/h is expected (SLHC).
- Some samples (from BTCP) are very radiation hard (Type I), which should be further studied.
PWO Crystals Grown along c axis

Isotropic transverse transmittance uniformity along crystal length

Calculated longitudinal T of CMS PWO crystal
- $// c$ axis,
- $\perp c$ axis, unpolarized light
- $\perp c$ axis, e-polarized light

Graphs:
- SIC-U313 (18 cm)
- SIC-U517 (21.6 cm)

200°C annealing 4 hour
- Seed end transverse (x, y)
- Tail end transverse (x, y)
- Longitudinal (z)

Transmittance (%) vs. Wavelength (nm)
PWO Crystals Grown along \textit{a axis}

Not isotropic transverse transmittance
Not uniform along crystal length
Type III Sample: Transmittance Loss

Type III sample: preexisting intrinsic color center at 420 nm after 200 degree annealing, causing difficulty for monitoring with 440 nm light.