Quality of Mass Produced PWO Crystals

Rihua Mao, Liyuan Zhang, Ren-Yuan Zhu

California Institute of Technology
Randomly Selected PWO Samples

20 Each from BTCP, Russia, and SIC, China

BTCP: $28.5^2 \times 220 \times 30.0^2$ mm

SIC: $22^2 \times 230 \times 22^2$ mm
Experiment

- All crystals went through (1) thermal annealing at 200°C, (2) irradiations by γ-ray at 15, 400 and 9k rad/h until equilibrium and (3) recovery.
- Properties measured: Transmittance, emission and excitation spectrum, light output, decay kinetics and light response uniformity, as well as their degradation, radiation induced color center and emission weighted radiation induced absorption coefficients.
- Light output degradation was only measured at 15 rad/h because of limited light output: less than 8 p.e./MeV for BTCP samples.
Thermal Annealing

- Rigorous temperature control both in amplitude and slope:
 - From RT to 200°C: 200 minutes;
 - Maintain at 200°C: 240 minutes;
 - From 200°C to 25°C: 400 minutes.

- Crystals are kept in dark at RT (18°C) after annealing. The minimum time between annealing and the 1st measurement is 48 hours.
Transmittance and Birefringence

a axis: better longitudinal T., but non-isotropic transverse T.
Both approaching theoretical limit

Czochralski: grown along the *a axis*
Bridgman: grown along the *c axis*

Detailed Diagrams

- **BTCP-1971**
 - 200°C anniling 4 hour
 - Transverse (x)
 - Transverse (y)
 - Longitudinal (z)

- **SIC-U517 (21.6 cm)**
 - 200°C anniling 4 hour
 - Transverse (x)
 - Transverse (y)
 - Longitudinal (z)

Calculated longitudinal T of CMS PWO crystal
- // c axis, unpolarized light
- ⊥ c axis, e-polarized light

Wavelength (nm)

October 20, 2003
NSS03 N5-6, Liyuan Zhang, Caltech
PWO Crystals Grown along \textit{c} axis

Isotropic transverse transmittance uniformity along crystal length

\begin{itemize}
 \item SIC-U313 (18 cm)
 \item 200\degree C annealing 4 hour
 \item Seed end transverse (x, y)
 \item Tail end transverse (x, y)
 \item Longitudinal (z)

 Calculated longitudinal T of CMS PWO crystal
 \begin{itemize}
 \item // \textit{c} axis,
 \item \perp \textit{c} axis, unpolarized light
 \item \perp \textit{c} axis, e-polarized light
 \end{itemize}

 Transmittance (%)

 Wavelength (nm)

\end{itemize}

\begin{itemize}
 \item SIC-U517 (21.6 cm)
 \item 200\degree C annealing 4 hour
 \item Seed end transverse (x, y)
 \item Tail end transverse (x, y)
 \item Longitudinal (z)

 Calculated longitudinal T of CMS PWO crystal
 \begin{itemize}
 \item // \textit{c} axis,
 \item \perp \textit{c} axis, unpolarized light
 \item \perp \textit{c} axis, e-polarized light
 \end{itemize}

 Transmittance (%)

 Wavelength (nm)

\end{itemize}
PWO Crystals Grown along \textit{a axis}

Not isotropic transverse transmittance
Not uniform along crystal length

BTCP-5615

- 200°C anniling 4 hour
- Small end
- Large end
- Longitudinal

Calculated longitudinal T of CMS PWO crystal
- // c axis,
- \(\perp\) c axis, unpolarized light
- \(\perp\) c axis, e-polarized light

BTCP-5658

- 200°C anniling 4 hour
- Small end
- Large end
- Longitudinal

Calculated longitudinal T of CMS PWO crystal
- // c axis,
- \(\perp\) c axis, unpolarized light
- \(\perp\) c axis, e-polarized light

October 20, 2003
NSS03 N5-6, Liyuan Zhang, Caltech
Light Output and Decay Kinetics

Both are fast: 84% and 96% in 50 and 100 ns

- **BTCP-2467**

 with T corrections (18°C)

- **SIC-T6**

 with T corrections (18°C)
Comparison of L.T. and Light Output

BTCP: higher L.T., partly due to birefringence

SIC: higher light yield, the reason is unclear
Caltech γ-ray Irradiation Facilities

Open 50 curie Co-60:
15, 100 and 400 rad/h

Closed 2,000 curie Cs-137:
9k rad/h at center, up to 36k rad/h
Photoluminescence

No variation in either excitation or emission spectrum

No damage in scintillation mechanism
No Variation in Light Response Uniformity

The response \((y) \) along the axis was fit to a linear function

\[
\frac{y}{y_{mid}} = 1 + \delta \left(\frac{x}{x_{mid}} - 1 \right)
\]
Light Output Degradation

Caused by radiation induced color center formation
Dose rate dependent: cc creation & annihilation
Damage in Longitudinal Transmittance

Radiation induced absorption caused by cc formation

From top to bottom
- 200°C annealing
- 15 rad/h (65 h)
- 100 rad/h (63 h)
- 400 rad/h (62 h)
- 9000 rad/h (10 h)
- 35000 rad/h (6.5 h)
Comparison of Radiation Damage

SIC samples seem more radiation hard

- **BTCP-PWO**
 - Mean: 16.86
 - RMS: 6.484

- **SIC-PWO**
 - Mean: 11.67
 - RMS: 2.341

- **400 rad/h**
 - χ^2/ndf: 1.489 / 3
 - Constant: 4.879
 - Mean: 14.79
 - Sigma: 5.277

- **Relative L.T. loss @ 440 nm (%)**
 - χ^2/ndf: 0.1179 / 1
 - Constant: 9.541
 - Mean: 11.22
 - Sigma: 3.513
Comparison of Transmittance Loss

SIC samples less diverse: Bridgman technology
Some BTCP samples are very rad hard at high doses
RIAC or radiation induced color center density can be calculated precisely by using longitudinal transmittance (0.2%)

\[
RIAC \; or \; D_{\text{Color-Center}} = \frac{1}{LAL};
\]

\[
LAL = \frac{\ell}{\ln\left\{\frac{[T(1 - T_s)^2]}{\sqrt{4T_s^4 + T^2(1 - T_s^2)^2} - 2T_s^2}}\right\}}
\]

where \(T \) is transmittance measured along crystal length \(\ell \) and \(T_s \) is the theoretical transmittance without internal absorption:

\[
T_s = (1 - R)^2 + R^2(1 - R)^2 + ... = \frac{(1 - R)}{(1 + R)}, \text{ with } R = \frac{(n_{\text{crystal}} - n_{\text{air}})^2}{(n_{\text{crystal}} + n_{\text{air}})^2}.
\]
Emission Weighted RIAC

\[EWRIAC = \frac{\int Riac(\lambda)Em(\lambda)d\lambda}{\int Em(\lambda)d\lambda} \]

<1 m\(^{-1}\): no damage in uniformity
EWRIAC (1/m) and Normalized r.m.s

<table>
<thead>
<tr>
<th></th>
<th>Vendor</th>
<th>BTCP</th>
<th>SIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 rad/h</td>
<td>400 rad/h</td>
<td>9.000 rad/h</td>
<td></td>
</tr>
<tr>
<td>0.16 (45%)</td>
<td>0.69 (37%)</td>
<td>1.43 (50%)</td>
<td></td>
</tr>
<tr>
<td>0.10 (33%)</td>
<td>0.51 (32%)</td>
<td>1.16 (48%)</td>
<td></td>
</tr>
</tbody>
</table>

BTCP-PWO

- Emission weighted RIAC. (m⁻¹)
- Dose rate (rad/h)

SIC-PWO

- Emission weighted RIAC. (m⁻¹)
- Dose rate (rad/h)
L. T. Loss versus Initial L.T. @ 360 nm

No correlation
EWRIAC versus Initial L.T. @ 440 nm

No correlation
Summary

- Investigation on 20 crystals each from two vendors shows that SIC samples are more consistent (Bridgman).

- Samples from both vendors have very good transmittance and fast light output. It is not clear why SIC samples produce more (58%) light.

- No correlations between radiation hardness and initial longitudinal transmittance was observed.

- Current mass-produced PWO crystals are radiation hard enough for an environment of up to a few hundreds rad/h. Further improvement is needed if thousands rad/h is expected (SLHC).

- Some samples are very radiation hard which should be further studied.