PWO Crystal ECAL Status

Ren-yuan Zhu
California Institute of Technology
May 11th 2002
Higgs Hunt at Low Mass

LEP observed an excess of events around 115 GeV

Higgs Mass (GeV)

Natural width (GeV)

H → γγ
H → ZZ* → 4 leptons
H → ZZ → 4 leptons
H → WW or ZZjj

H → γγ signal in CMS ECAL @ design resolution
The Calorimeter

- 36 supermodules in barrel, 4 Dees in endcaps.
 1,700 crystals/supermodule, 4,000 crystals/Dee
- 61,200 crystal/barrel, 16,000 crystal/end caps
- 2 APD’s/crystal in barrel, 1 VPT/crystal in endcaps
- High resolution electronics of 95 db dynamics, light to light readout.
- 1 monitoring fiber/crystal for in situ monitoring.
Status: Electronics is Critical

• Crystals:
 • All 61,200 barrel crystals contracted to BTCP, Russia, where 2 crystals grown in one ingot. 8,700 received
 • 1,000/month in 2002 and 1,800/month in 2003
 • Endcap contract pending because of financial uncertainty

• Photo detector:
 • Hamamatsu APD finalized. 25,000 received
 • Ultra fine mesh vacuum phototriode (VPT) for endcaps: G > 8 & QE ~ 20% at 4T, radiation hard

• Electronics:
 • Estimated cost escalated from 31 to 54 MCHF: redesign
 • FPPA2000 has high noise (4 X) and wrong pulse shape
 • FPPA2001 prototype expected in February, 2003

• Calibration & Monitoring:
 • On schedule: 1st laser at CERN
ECAL Planning

Goal: Apr 07 - ECAL complete and commissioned
Advance the detailed test (also system test) of 1st SM to mid-2003
(final analog electronics + emulated FPGA digital part)
EB electronics mounted in 2004/2005 – calibrate at least 9 SMs in 2004
EE and SE mounted in 2005/2006, calibrate 1 Dee in 2006
PWO Crystals Growth

32 to 65 cm diameter at BTCP with Czochralski

BCTP
March 2001
PWO Crystal Quality Control

2 Regional Centers

INFN/ENEA
Rome

Automatic control of:

- Dimensions
- Transmission
- Light yield and uniformity
Overall ECAL Assembly

- Submodule
 - 10 crystals
- Module
 - 40/50 Submodules
- Supermodule
 - 4 Modules
- Supercrystal
 - 25 crystals
- Dee
 - 138 Supercrystals
- 36 Supermodules
- 4 Dees
Barrel Construction

Crystal & Capsule Module Assembly

Alveola structure: Submodule Module Assembly
Monitoring Assembly

23 stable channels (among a total of 30 channels)

Stability: 0.1%

all 23 channels superimposed

Monitoring Low Level Fiber Distribution
Supermodule: M4 of SM 1
The Baseline Readout in May '01

Readout Elements

Energy → Light

Light → Current

Current → Voltage

Voltage → Bits

Bits → Light

WBS 4.1

WBS 4.6.1

WBS 4.6.2

WBS 4.6.3 Fiber Optics

Fiber Optics

WBS 4.6.4 CTRL

WBS 4.6.5 VFE Assy.

FPPA

ADC

OPTO Ser

CTRL

O/E

Ren-yuan Zhu, Caltech
ECAL Electronics: Old Design

All Data go Upstairs

~90,000 0.8 GHz fiber links

Flexible architecture: All data processing upstairs

Justification: No rad hard electronics in an inaccessible location.
Problems in the Old Design

• Fiber-Optic link:
 • 90,000 links (76,000 signal + 15,500 control) at $150 each.

• Upper level readout:
 • 800 Rose-100 boards in counting room for trigger primitive generation and readout.

• Low voltage power supply:
 • 1,400 LV supplies -- 200 kW dissipated in the control room.
Move Trigger Processing into detector

Number of fiber links ~ 12,000
Cost: 20 MCHF less than old design
Function: equivalent to the original design in 1998.
Reduces number of receiver boards to ~ 60.
Less flexible and increased risk if channel failure.
ECAL Electronics: New Architecture

APD FPPA ADC FENIX GOL Fiber Link

Photodetector

Preamp + Multi-range sample and hold

ADC

14

FENIX A

Data store

14

FENIX B

Trigger primitive generator

Serializers

Laser diodes

Fiber link

TTC - rx

Clock & control

Diode
Details of the system integration are still being worked out.

Power budget is less and the amount of material between the ECAL and HCAL is reduced. Still need to work out full design details.
Status of the Design Change

• The old system cost at least 20 MCHF more than the 112 MCHF cap on ECAL.

• The new lower-cost design was encouraged by ECAL IB and CMS MB in March 2002.

• The new design is still being defined by CMS ‘international’. It will be baselined in June, 2002, after a `feasibility’ study.

• US role is the same wherever possible.

• Some changes to the the US contributions to the project are still under discussion.
Concerns: Global and Local

- **Global:**
 - Cost of the new design still exceeds available funds.
 - The number of people working on ECAL is less than required.

- **US:**
 - Peter Denes (electronics coordinator) left Princeton to lead the electronics group at LBL.
 - Princeton has not acted to replace him: lack of base support from the DOE.
 - There have been repeated failures in our ASIC designs.
US Responsibilities (Old)

- **APD: Northeastern & Minnesota with PSI**
 - 30% procurement & 50% calibration

- **Barrel Electronics: LBL (Princeton) with Lyon, CERN, ETHZ**
 - FPPA, Bit-Serializer, Optical interconnect, ADC & Control chip.

- **Monitoring Light Source: Caltech**
 - Laser light source and high level distribution for the monitoring and calibration of the calorimeter.
US Responsibilities (New)

• APD: Northeastern and Minnesota with PSI
 • 30% procurement & 50% calibration

• Monitor Light Source: Caltech
 • Laser light source and high level distribution for the monitoring and calibration of the calorimeter.

• Electronics*:
 • FPPA: LBL with Lyon
 • ADC: Minnesota with ETHZ
 • Fiber Links: Minnesota with CERN
 • TTC – rx (Timing & Trigger Control Receiver): Fermilab
 • Low Voltage (Plan to use the same 400V – 400 Hz system for HCAL and FMU): Fermilab (?) with ETHZ

* This distribution of effort is still under discussion
Status of Avalanche Photodiode

- Similar to PIN diode with × 50 avalanche gain
 - Require failure rate < 1:1000 over detector lifetime.

- Extensive QC for all APD’s:
 - Irradiated with ^{60}Co to 500 kRad.
 - Burn in for a month at 85°C
 - Measure noise, dark current, gain and breakdown.

- Some APD’s measured in detail.
 - QE, excess noise factor, detailed gain.

- Some irradiated with 2×10^{13} n/cm2

25,000 APD’s delivered, 6,000 sent to construction, processing at 350/day
APD Quality Control

APD’s which change during irradiation or bake-out are rejected.

Reject APD’s with large I_D/M

Reject APD’s with large change in V_B

All APD’s must pass the Gamma-ray irradiation tests.
Neutron Testing of APD’s

Minneapolis neutron test facility with a large 252Cf source

For APD’s, FPPA’s and ADC’s

Additional a large 137Cs is available for gamma irradiations
Status of Monitoring Light Source

- Completed monitoring test bench, determined monitoring wavelength at 440 nm.
- Laser light source construction is on schedule and cost. 1st laser system was installed & commissioned at CERN in August, 2002.
- A laser at long wavelength (red) is under consideration to be added to the system. Recent ECAL TCG on April 16 decided to choose the Quantronix red laser.
Initial calibration on test beam (as much crystals as possible)

In situ calibration with physics (\(W \rightarrow e^+n, \ Z \rightarrow e^+e^- \)): using E/p allows an inter-calibration of 0.5% in 35 days at low luminosity.

Monitoring evolution of crystal response by light injection system

CMS ECAL Monitoring System

DATA LINK

- **ADC & OPTO**
- **FPPA**
- **APD**

CTRL

OPTO

SERIALIZER

ADC (x 12)

PN

FE

F1

F2

S

Laser

PWO

Laser and Switch:
- **Caltech responsibility**
- **Low level distribution**
- **Saclay responsibility**

440 nm

500 nm

700 nm
Design of Monitoring Light Source

- Two laser systems each tunable at 440 & 500 nm and with own diagnostics on wavelength, jitter and intensity.

- An optical switch directs monitoring laser pulses to 80 super-modules.

- A computer control records the history and performance of lasers and switch.
Monitoring Wavelength Determination

d(T) versus d(LY)

Sensitivity and Linearity

440 nm is chosen for the best linearity
YLF AND Ti:Sapphire Lasers
Laser System Control

Control: Two Lasers and Monitoring Run Mode

Laser Settings

Laser Waveform Display
Chilled Water Installed on 8/21/2001

Outside Laser Room
Inside Laser Room

Note: blackened filter caused by dirty chilled water. Solution: add a heat exchanger.
Laser Reached 1.1 mJ/pulse on 8/24
FPPA History

• ‘96 Separate PA+FPU circuits; discrete gains non-rad-hard AMS 0.8μ BiCMOS (X3)
• ‘97 Improved versions in rad-hard DMILL 0.8μ BiCMOS, “Light-to-Light” readout at H4
• ‘98 Integrate PA+FPU: problems with DMILL → UHF1x
• ‘99 FPPA ‘98 (UHF1x) at H4
• ‘00/01 FPPA2000: 1st full-wafer run, 1st chip with complete final functionality, but with problems
• Revision needed → FPPA2001
FPPA2000 did not meet specifications

1. Unexpected high noise (FPPA ‘98 noise OK)
2. Non-linearity & pulse-shape distortion
3. Gain errors
4. Marginal timing of output pulse in some cases (with respect to sampling clock)

1) through 3) explained by on-chip parasitic resistance not in the Intersil simulation, which was proved with EB surgery and improved simulation. All appears to be understood.

4) Requires a redesign of the output driver. This was Lyon responsibility, now in hands of LBL.
Pulse shape distortion

Parasitic resistance in power traces

\[\Delta V = R \Delta I \]

Preamp

\[\Delta V = R \Delta I \]

Preamp

\[\Delta V = R \Delta I \]

Preamp

Fixed by star connection

Measured

Simulated with parasitic resistance

Normalized Amplitude

Time [s]

Normalized Amplitude

Time [s]
17 ke Noise

Current noise of the first stage converted into a voltage in series with vdd due to the supply bus parasitic resistance. This voltage noise is injected in the class A/B stage (-A).

Their combination increases the output preamp noise.
FPPA Plan

- Second FPPA review late May
- If all OK then
 - Submission late June for full wafer run
 - Wafers back early October (13 weeks)
 - Test small quantity at LBL in ceramic package
 - Package 2000 in plastic package and test at Lyon
 Help from US group needed for this.
- If all OK then (Feb, 03)
 - Proceed to production.

ECAL V20.1/CMS V33 schedule allows for one more iteration: 31,000, 31,000 & 16,000 are needed by Apr/04, Oct/04 & Apr/05 for EB+, EB- & EE, respectively.
FPPA Testing

• Current plan:
 • Setup automated package tester at LBL
 • Package all components
 • Test at LBL
 • Expected yield is 50% need 80,000 tested parts
 • Cost ~$500k

• Other options:
 • Do the testing at Fermilab
 • Do it in Europe at Lyon or SDM
 • Industry in the US

Decision will be made in summer based on cost and feasibility
ECAL Major Milestones

• M0 (400 channels) in beam: July, 02. Monitoring laser and APD ready
• SM0 test beam: April 1 – Jun 29, 03
• ADC production starts: Sep, 02
• FPPA production starts: Oct, 03
• FENIX FPGA prototypes ready: Jan, 03
• FENIX ASIC ready: Aug, 03
• SM1 test beam: Apr 22 – 28, 04
• SM2 and SM3 production starts: Jan, 04
• 4 SM/month after…
• EB/EE ready in UX : Jul, 05/Sep, 06
• CMS closed ready: Apr, 07
Summary

- PWO crystal ECAL promises precision photon and electron physics at LHC.
- The overall ECAL V20.1/CMS V33 schedule is extremely tight, and does not allow calibration of all supermodules before installation.
- US takes significant responsibility in ECAL construction. Monitoring light source and APD are on schedule.
- The electronics is going through a major redesign so that it can be built within available resources. The new design will be baselined in June, 02. There are changes of US responsibilities.
- Urgent issue: Electronics, especially FPPA.