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Figure 5.13 Example of the KEYS adaptive kernel estimation. (a) Input data; (b) histogram-
based estimate with second order interpolation; (c) KEYS adaptive kernel estimate. (Reprinted
with permission from Verkerke and Kirkby (2006), copyright 2006, W. Verkerke and D. Kirkby).

The iteration on the fixed kernel estimator nearly removes the dependence on
our initial choice of w. The boundaries pose some complication in carrying this
out.

There are packages for adaptive kernel estimation, for example, the KEYS (“Ker-
nel Estimating Your Shapes”) package (Cranmer, 2001). Figure 5.13 illustrates the
use of this package.

5.10
Naive Bayes Classification

We anticipate the classification chapters of this book with the introduction of a
simple yet often very satisfactory classification algorithm, the naive Bayes classifier.
The problem is to correctly classify an observation x into one of K classes, Ck , k D
1, . . . , K . We must learn how to do this using a dataset of N observations X D
x1, . . . , x N with known classes. We assume that observation x is sampled from
the same distribution as the “training set” X. For example, the training set may be
produced by a simulation where the true classes are known.

The idea of the naive Bayes algorithm is to use Bayes’ theorem to form an es-
timate for the probability that the x belongs to class k. With such probability es-
timates for each class, the class with the highest probability is chosen. To apply
Bayes’ theorem, we need two ingredients: the marginal (prior) probability to be in
class k, P(Ck ); and the probability to sample observation x given class k, P(xjCk ).
That is,

P(Ck jx ) / P(xjCk )P(Ck) . (5.34)

The normalization isn’t needed as it is the same for all classes.
The training set is used to estimate P(xjCk ), by evaluating the local density for

class Ck in the neighborhood of x . In general, this may be very difficult to do pre-
cisely if there are many dimensions. So a great simplification is made in the naive
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Table 5.1 Confusion matrices corresponding to Figure 5.14.

Predicted class

(a) (b)
Plus Dot Plus Dot

Actual class
Plus 215 185 143 257
Dot 40 1960 23 977

Bayes algorithm: Assume that the probability P(x jCk ) factorizes, for each class like

P(xjCk ) D
DY

dD1

P(xd jCk ) . (5.35)

That is, we assume that the variables in x are statistically independent when con-
ditioned on class. This makes the density estimation problem much easier, since
we have only to estimate D one-dimensional densities (for each class) instead of
a D-dimensional density. Typically, this is implemented with D one-dimensional
kernel density estimators.

In spite of the simplicity, the naive Bayes algorithm often performs rather well,
even in some cases when the assumption of class-conditioned independence is not
correct. Examples of naive Bayes classification are illustrated in Figure 5.14. Fig-
ure 5.14a shows separation for a class with a bimodal distribution from a class
with a unimodal distribution, but for which the assumption of independence is
strictly correct. Figure 5.14b shows an example of the trained class boundary for
a dataset in which the assumption of independence within a class is not correct.
The algorithm is clearly having trouble in this case. Other values for the smooth-
ing parameter do not improve the performance in this example. The separation
boundary of a more general classifier, a neural net, on this dataset may be seen for
comparison in Figure 12.3.

Quantitative measures of performance of a classifier are developed in coming
chapters. However, a simple picture is given by the confusion matrices, given in
Table 5.1. These are computed by applying the classifiers as trained by the data in
the two sides of Figure 5.14 to new datasets generated with the same distributions.
We could also compute the matrices directly on the data used for training, but the
results would tend to be biased towards overstating the performance.

5.11
Multivariate Kernel Estimation

Besides the curse of dimensionality, the multidimensional case introduces the
complication of covariance. When using a product kernel, the local estimator has
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Figure 5.14 Naive Bayes classifier examples
in two feature dimensions and two classes.
The two classes are indicated with dots and
pluses. The solid line shows the prediction
boundary between the two classes as deter-

mined by the naive Bayes algorithm using the
dataset in each figure. Training is performed
with the MATLAB NaiveBayes.fit method,
using default Gaussian kernel smoothing for
the density estimation.

diagonal covariance matrix. In principle, we could apply a local linear transforma-
tion of the data to a coordinate system with diagonal covariance matrices. This
amounts to a nonlinear transformation of the data in a global sense, and may not
be straightforward. However, we can at least work in the system for which the over-
all covariance matrix of the data is diagonal.

If fy ngN
nD1 is the suitably diagonalized data, the product fixed kernel estimator

in D dimensions is

Op0(y ) D 1
N

NX
nD1

"
DY

dD1

1
wd

K

 
y (d) � y (d)

n

wd

!#
, (5.36)

where y (d) denotes the dth component of the vector y . The asymptotic, normal
MISE-optimized smoothing parameters are now

wd D
�

4
D C 2

�1/(DC4)

σd N�1/(DC4) . (5.37)

The corresponding adaptive kernel estimator follows the discussion as for the uni-
variate case. An issue in the scaling for the adaptive bandwidth arises when the
multivariate data is approximately sampled from a lower dimensionality than the
dimension D.

Figure 5.15 shows an example in which the sampling distribution has diagonal
covariance matrix (locally and globally).

Applying kernel estimation to this distribution yields the results in Figure 5.16,
shown for two different smoothing parameters.

For comparison, Figure 5.17 shows an example in which the sampling distribu-
tion has nondiagonal covariance matrix. Applying the same kernel estimation to


