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8.3 Principal Component Analysis (PCA) 147

Figure 8.1 Principal and independent components for two bivariate normal densities. The sec-
ond PCA axis is orthogonal to the one shown. The two ICA axes are aligned with the stretch
directions.

resentation of the data. Whether such elimination is possible must be decided on
the merits of a specific analysis. Techniques for choosing the optimal number of
principal components are described in Section 8.3.4. Here, dimensionality reduc-
tion occurs in the transformed space. Reducing the number of original, nontrans-
formed variables is discussed in Chapter 18.

The two rotations described in this chapter disregard class labels. They apply to
the entire data, signal and background, and therefore are not used for supervised
learning. Sometimes analysts apply principal component analysis and claim that
it improves separation of signal and background by a consequent classification al-
gorithm. Such an improvement can occur by accident but is not guaranteed; the
effect of the rotation could be just the opposite. Class-conscious linear techniques
are described in Chapter 11.

8.3
Principal Component Analysis (PCA)

Principal component analysis is one of the oldest statistical tools. It was proposed
in Pearson (1901). Similar formalism was later developed in other fields. The
terms “principal component analysis”, “Hotelling transform” (Hotelling, 1933)
and “Karhunen–Loeve transform” sometimes mean the same thing and some-
times mean slightly different things, depending on what is viewed as the “stan-
dard” PCA. We follow the approach by Hotelling using modern notation. PCA is
described in many textbooks.

Nonlinear PCA, factor analysis (PCA with noise), and other extensions of PCA,
although of potential interest to physics analysis, are not covered here.
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148 8 Linear Transformations and Dimensionality Reduction

In-depth reviews of PCA can be found in Jolliffe (2002) and Abdi and Williams
(2010).

8.3.1
Theory

Suppose X is a random column vector with D elements. Without loss of generality,
we can assume that the expectation of any element in X is 0: E X D 0D�1. If this
is not the case, we can center X by subtracting its expectation.

We seek a linear transformation W such that the transformed variables in vector
Z ,

Z D WX , (8.1)

are uncorrelated. Here, W is a D � D matrix, and Z has the same dimensionality as
X . If the expectation of any element in X is 0, so is the expectation of any element
in Z . Two scalar random variables with zero expected values are uncorrelated if
their expected product is zero. In matrix notation, we require that the covariance
matrix

ΣZ Z � E(Z ZT) (8.2)

be diagonal. Since Z is a column vector, Z ZT is a D � D matrix. If we substitute
Z D WX in the equation above, we obtain

ΣZ Z D WΣX X WT , (8.3)

or equivalently

ΣX X D VΣZ Z VT , (8.4)

where V is the inverse of W. To avoid writing the sub-indices from now on, we
define ΣX X � Σ and ΣZ Z � Λ and finally obtain

Σ D VΛVT . (8.5)

The right-hand side gives an eigenvalue decomposition (EVD) of the covariance
matrix Σ . Matrices Σ and Λ have identical eigenvalues and are said to be similar.
Matrix V is orthogonal, VTV D VVT D ID�D , where I is an identity matrix with 1 on
the main diagonal and 0 elsewhere.

The covariance matrix Σ is symmetric and therefore can be always decomposed
in this form. It is trivial to show that the covariance matrix is positive semidefinite,
that is, aTΣ a � 0 for any vector a. The eigenvalues of Σ , or equivalently the diago-
nal elements of Λ, are nonnegative. It is easy to see that the mth diagonal element
of Λ gives the variance of X along the mth principal component. In the real world,
EVD is subject to numerical errors. Sometimes your software application can find
negative eigenvalues, especially if you work in high dimensions.
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Base vectors in the Z space are called principal components. To get the mth prin-
cipal component, set the mth element of z to 1 and the rest to 0. Directions of the
principal components in the X space, known as loadings in the statistics literature,
are given by the columns of matrix V. Projections of a column vector x onto the
principal axes, known as scores in the statistics literature, can be found by taking D
dot products, xTV.

The eigenvalue decomposition is defined up to a permutation of diagonal ele-
ments in Λ with a corresponding permutation of columns in V. If we sort the
diagonal elements in Λ in descending order, λ11 � λ22 � . . . � λD D , we commit
to a unique ordering of eigenvalues. The decomposition is still not unique as we
can flip the sign of any column in V.

PCA can be applied to the covariance matrix Σ or to the correlation matrix C D
Ω �1/2Σ Ω �1/2, where Ω D diag(Σ ) is a matrix with the main diagonal set to that
of Σ and all off-diagonal elements set to zero. The choice between covariance PCA
and correlation PCA should be based on the nature of analyzed variables. If the
variables are measured in different units and have substantially different standard
deviations, correlation PCA should be preferred. If the variables are measured in a
similar fashion and their standard deviations can be compared to each other in a
meaningful way, covariance PCA would be appropriate.

If X is drawn from a multivariate normal distribution, its principal components
are aligned with the orthogonal normal axes. If two normal random variables are
uncorrelated, they are independent. On occasion you can hear people say that PCA
requires multivariate normality and finds independent variables. This merely de-
scribes one particular, although important, case of PCA. In general, PCA is not
restricted to normal distributions. Independence is a stronger requirement than
zero correlation. For normal random variables, these two requirements happen to
be equivalent. For nonnormal variables, a PCA transformation does not necessarily
produce new independent variables. A technique that attempts to obtain indepen-
dent variables by a linear transformation is called Independent Component Analy-
sis and described in Section 8.4.

The derivation of PCA shown here is due to Hotelling. Originally, PCA was pro-
posed by Pearson who approached from a different angle. Define a rotation Z D
WX . Transform Z back to the original space X D WTZ and take E(jjX �WTWX jj2)
to be the reconstruction error induced by the transformation W. Set the reconstruc-
tion error to zero by choosing W D VT with V defined in (8.5).

8.3.2
Numerical Implementation

In practice, the covariance matrix Σ usually needs to be estimated from data. Let
X be an N � D matrix with one row per observation and one column per variable.
Think of X as a set of observed instances of the random column vector X , trans-
posed and concatenated vertically. First, center X by subtracting the mean of every
column from all elements in this column. Since most usually the true mean is not
known, use the observed mean instead. Then estimate the covariance matrix by
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putting OΣ D XTX/(N � 1). The 1/(N � 1) factor is needed to get an unbiased es-
timate of the covariance matrix assuming a multivariate normal distribution. It is
absorbed in the definition of Λ and has no effect on the principal components.

Numerically, PCA can be carried out in various ways. Modern software packages
often use singular value decomposition (SVD). One advantage of SVD is not having
to compute the covariance matrix XTX. Instead we decompose

Xp
N � 1

D USVT . (8.6)

In the full SVD decomposition, U is of size N �N , S is of size N �D , and V is of size
D � D . Matrices U and V are orthogonal, and matrix S is diagonal. A nonquadratic
diagonal matrix is defined by putting s i j D 0 for any pair i and j except i D j .

In physics analysis, X is often very tall, N � D . Computing an N �N matrix U in
this case can consume a lot of memory and time. Fortunately, this is not necessary;
because N � D bottom rows of S are filled with zeros, the last N � D columns of U
can be discarded. In the thin version of SVD, U is N � D and S is D � D . Note that
U is no longer orthogonal: UTU D ID�D holds, but UUT is not an identity matrix.

Substituting (8.6) into (8.5), we obtain a simple relation between eigen and sin-
gular value decompositions,

Λ D S2 , (8.7)

for a square matrix S. The elements of S are standard deviations along principal
components. The matrix V is the same in both decompositions.

When we square a diagonal matrix, we also square its condition number, de-
fined as the ratio of the largest and smallest eigenvalues. Generally, matrices with
large condition numbers pose problems for numerical analysis. If the condition
number is too large, the matrix is said to be ill-conditioned. For this reason, PCA
implementations often prefer SVD of X over EVD of XTX.

PCA is included in many data analysis software suites. One example is function
pca available from the Statistics Toolbox in MATLAB (or function princomp in
older MATLAB releases).

Numerical issues in matrix operations are described in many books. We recom-
mend Press et al. (2002) and Moler (2008).

8.3.3
Weighted Data

In physics analysis, observations are often weighted. Let w be a vector with weights
for observations (rows) in matrix X. Here, vector w has nothing to do with the
transformation matrix W; unfortunately, both entities are most usually denoted
by the same letter. Suppose the weights have been normalized to sum to 1. The
observed weighted mean for variable d; d D 1, . . . , DI is then

Oμd D
NX

nD1

wn xnd . (8.8)



�

� Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —
Chap. c08 — 2013/9/9 — page 151 — le-tex

�

�

�

�

�

�

8.3 Principal Component Analysis (PCA) 151

The observed weighted covariance for variables i and j is given by

Oσ i j D
NX

nD1

wn (xni � Oμ i)
�
xn j � Oμ j


. (8.9)

This estimate of the covariance is biased. For unweighted data drawn from a
multivariate normal distribution, the unbiased estimate of the covariance matrix is
given by XTX/(N � 1). But if we set all weights in (8.9) to 1/N , we would get XTX/N .
A small corrective factor fixes this discrepancy:

Oσ i j D
PN

nD1 wn (xni � Oμ i )
�
xn j � Oμ j


1 �PN

nD1 w2
n

. (8.10)

Multiplying all elements of the covariance matrix by the same factor does not
change the principal components.

An equivalent way of estimating the covariance matrix would be to use WX,
where W is a diagonal N � N matrix. The nth element on its main diagonal is
set to s

wn

1 �PN
nD1 w2

n

,

and off-diagonal elements are set to zero. PCA of weighted data can be then carried
out just like the ordinary PCA, either by EVD of OΣ D XTW2X or by SVD of WX.

8.3.4
How Many Principal Components Are Enough?

For N observations and D variables, we can find, after centering, Mmax D max(N �
1, D) principal components at most. The number of principal components is lim-
ited by the rank of matrix X and can be smaller than Mmax if some variables (or
observations) are linear combinations of other variables (or observations). Yet for
sufficiently large N and D the number of principal components can be impractical-
ly high.

Often it is possible to keep just a few largest principal components and dis-
card the rest. This strategy is justified if the condition number of the estimated
covariance matrix XTX for covariance PCA or estimated correlation matrix for cor-
relation PCA is large. Under multivariate normality, a formal procedure described
in Bartlett (1950) can be used to test the equality of all eigenvalues for covariance
PCA. In practice, a number of heuristic techniques, not requiring the normality as-
sumption, can be deployed for deciding how many principal components deserve
to be kept.

One simple approach is to select as many components as needed to keep the
fraction of the total variance explained by the first M components,

δM D
PM

mD1 λmPMmax
mD1 λm

, (8.11)
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above a specified threshold. Here, λm is the mth diagonal element of matrix Λ.
Jolliffe (2002) recommends setting this threshold to a value between 0.7 and 0.9.

Another simple approach is to plot eigenvalues λm versus m and find where the
slope of the plot goes from steep to flat, implying that the extra components add
little information. This point is called an elbow, and this plot is called an elbow or
scree plot. In a slightly modified version of this technique, plot the difference be-
tween the adjacent eigenvalues λm � λmC1 to detect the point where the difference
approaches zero.

These two simple techniques are subjective and can produce inconclusive re-
sults. We apply these techniques to the ionosphere data available from the UCI
repository (Frank and Asuncion, 2010) and show the results in Figure 8.2. There is
no well-defined elbow on the scree plot. Based on the two plots, we could decide to
retain at least seven components.

The two simple techniques described above could be applied to either covariance
or correlation PCA. Peres-Neto et al. (2005) evaluate a number of less subjective
approaches for correlation PCA aimed at discovering nontrivial principal compo-
nents. A component is nontrivial if it has sizable contributions from two or more
variables. The case of trivial components corresponds to an identity correlation ma-
trix when all variables are normally distributed and independent. The presence of
nontrivial components would be seen in a departure of some eigenvalues from
one. The algorithms reviewed in Peres-Neto et al. (2005) search for nontrivial com-
ponents with large eigenvalues.

Even if data were drawn from a perfectly spherical pdf, unequal eigenvalues
would be observed due to random fluctuations. The largest eigenvalue would be
always above one. To estimate the significance of the mth component, we could
compare the observed mth eigenvalue with the distribution for the mth eigenvalue
found in data with trivial components only. One of the more accurate algorithms for
identifying nontrivial components in data with trivial and nontrivial components
mixed combines this approach and a permutation test. This algorithm works as fol-

Figure 8.2 (a) Variance of an individual component normalized to the total variance versus
component index (squares) and explained fraction of total variance versus the number of com-
ponents (stars). (b) Two versions of the scree plot. Both plots are for the ionosphere data.
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lows. Run PCA on the input data to obtain the eigenvalues λ1 � λ2 � � � � � λMmax .
Generate R replicas of the input data for sufficiently large R. In each replica, shuf-
fle values for each variable at random. Apply PCA to each replica r and record the
eigenvalues, λ(r )

1 � λ(r )
2 � � � � � λ(r )

Mmax
. Compute p-values for Mmax null hypothe-

ses “the mth component is trivial”. To compute the p-value for the mth hypothesis,
count the number of eigenvalues found in the shuffled data fλ(r )

m gR
rD1 above the ob-

served eigenvalue λm . A low p-value indicates that λm is statistically large and likely
produced by a nontrivial component. For large values of Mmax, we should account
for effects of multiple testing, to be discussed in Sections 10.4 and 18.3.2.

We apply this algorithm to the ionosphere data using R D 1000 replicas. The
p-values for the five largest components are exactly zero, and so is the p-value for
the last (34th) component. The p-values for all other components are exactly one.
We conclude that the five largest components are not trivial. The 34th component
does not represent a significant effect. The second variable in the ionosphere data
has zero variance, and the rank of the input matrix is therefore at most 33. The
respective eigenvalue differs from zero by a value of the order of 10�31 due to
floating-point error. The 34th eigenvalue in every shuffled replica is equally mean-
ingless and should be ignored.

Note that trivial components can be essential for explaining the data. For in-
stance, one variable with large variance and small correlation with the rest of the
variables could be responsible for most observed variance. The described algo-
rithm, as well as the other algorithms in Peres-Neto et al. (2005), by design would
fail to detect its significance.

An alternative approach is to keep as many components as needed to satisfy
bounds on the reconstruction error. These bounds could be set by the physics or by
engineering tolerance constraints on the measured data. Here is one way to define
the reconstruction error. Project data X onto the principal components, Z D XV.
Then project the obtained scores Z back onto the original variables, OX D XVVT. The
reconstructed matrix OX equals X because V is orthogonal. Let VM be a matrix of
PCA loadings for the first M components. To obtain this matrix, delete columns
with indices M C 1 and higher in the full loading matrix V. The reconstructed
matrix OXM D XVM VT

M may not equal X because VM may not be orthogonal. Let
R(M) D OXM � X be a matrix of residuals. The Frobenius norm,

kR(M)kF D
vuut NX

nD1

DX
dD1

�
r (M)

nd

	2
, (8.12)

divided by the square root of the total number of elements in X can be used as
the average reconstruction error. The maximal reconstruction error is given by the
element of R(M) with the maximal magnitude.

If we used the same data X to estimate V and to compute the reconstruction error,
the error estimate would be biased low. We will discuss this phenomenon again in
Chapter 9 in the context of supervised learning. If a large amount of data is avail-
able, we can find the loadings V using one dataset and estimate R(M) using another
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set. If there is not enough data, we can use cross-validation. Split X into K disjoint
subsets with N/K observations (rows) per subset, on average. Take the first subset
out of X. Run PCA on the remaining K�1 subsets to estimate V(1). Apply the found

loadings V(1) to the held-out subset to obtain OX(1)
M ; M D 1, . . . , Mmax. Repeat for the

remaining K � 1 subsets. Form the reconstructed matrix OXM by concatenating the

reconstructed subset matrices OX(k )
M ; k D 1, . . . ,K. This concatenation is unambigu-

ous because every observation (row) in X can be found in one subset matrix only.
The residual matrix R(M) is then defined in the usual way.

We compute the average and maximal reconstruction error for the ionosphere
data by 10-fold cross-validation. The results are shown in Figure 8.3. The aver-
age error steadily decreases as the number of principal components grows. The
maximal error shows no improvement over the value obtained using just the first
component until the number of components exceeds 20.

A more sophisticated technique for optimizing the number of components,
based on the reconstruction error, is described in Krzanowski (1987).

8.3.5
Example: Apply PCA and Choose the Optimal Number of Components

Contents
� Load data
� Center the data
� Perform PCA
� Plot the explained variance
� Make a scree plot
� Find nontrivial eigenvalues
� Partition the data in 10 folds for cross-validation
� Estimate reconstruction error by cross-validation.

Figure 8.3 Average and maximal reconstruction error versus the number of principal compo-
nents for the ionosphere data.


