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20 2 Parametric Likelihood Fits

where P0 and P1 are disjoint subsets of P . If

lim
N!1

sup αTN (P ) � α (2.59)

for any P 2 P0, then α is called an asymptotic significance level of TN.
Definition 2.7. Consider sample X D (X 1, . . . , X N ) from population P 2 P . Let θ be
a parameter vector for P, and let C(X) be a confidence set for θ . If lim infN!1 P [θ 2
C(X)] � 1 � α for any P 2 P , then 1 � α is called an asymptotic confidence level of
C(X).

Definition 2.8. If limN!1 P [θ 2 C(X)] D 1 � α for any P 2 P , then C(X) is a
1 � α asymptotically correct confidence set.

There are many possible approaches, for example, one can look for “Asymptoti-
cally Pivotal” quantities; or invert acceptance regions of “Asymptotic Tests”.

2.2.4
Profile Likelihood

We may compute approximate confidence intervals, in the sense of coverage, using
the “profile likelihood”. Consider likelihood L(μ, η), based on observation X D x .
Let

L P (μ) D sup
η

L(μ, η) . (2.60)

L P (μ) D L(μ, η(μ)) is called the Profile Likelihood for μ. This provides a lower
bound on coverage. Users of the popular fitting package MINUIT (James and Roos,
1975) will recognize that the MINOS interval uses the idea of the profile likelihood.
We remind the reader that, for Gaussian sampling, intervals obtained with the pro-
file likelihood have exact coverage (Section 2.2).

The profile likelihood has good asymptotic behavior: let dim(μ) D k. Consider
the likelihood ratio:

λ(μ) D L P (μ)
maxθ 0 L(θ 0)

, (2.61)

where θ D (μ, η). The set

C(X ) D fμ W �2 log λ(μ) � cαg , (2.62)

where cα is the �2 corresponding to the 1 � α probability point of a �2 with k
degrees of freedom, is an 1 � α asymptotically correct confidence set. It may how-
ever not provide accurate coverage for small samples. Corrections to the profile
likelihood exist that improve the behavior for finite samples (Reid, 2003).

2.2.5
Conditional Likelihood

Consider likelihood L(μ, η). Suppose Tη(X ) is a sufficient statistic for η for any
given μ. Then, conditional distribution f (X jTηI μ) does not depend on η. The
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likelihood function corresponding to this conditional distribution is called the con-
ditional likelihood. Note that estimates (e.g., MLE for μ) based on conditional likeli-
hood may be different than for those based on full likelihood. This eliminates the
nuisance parameter problem, if it can be done without too high a price.

For example, suppose we want to test the consistency of two Poisson distributed
numbers. Such a question might arise concerning the existence of a signal in the
presence of background. Our sampling distribution is

P(m , n) D μm νn

m!n!
e�(μCν) . (2.63)

The null hypothesis is H0 W μ D ν, to be tested against alternative H1 W μ ¤ ν. We
are thus interested in the difference between the two means; the sum is effectively
a nuisance parameter. A sufficient statistic for the sum is N D m C n. That is, we
are interested in

P(njm C n D N ) D P(N jn)P(n)
P(N )

D μN�n e�μ

(N � n)!
νn e�ν

n!

,
(μ C ν)N e�(μCν)

N !

D
�

N
n

��
ν

μ C ν

�n � μ
μ C ν

�N�n

. (2.64)

This probability now permits us to construct a uniformly most powerful test of our
hypothesis (Lehmann and Romano, 2005). Note that it is simply a binomial distri-
bution, for given N. The uniformly most powerful property holds independently
of N, although the probabilities cannot be computed without N.

The null hypothesis corresponds to μ D ν, that is

P(njm C n D N ) D
�

N
n

��
1
2

�N

. (2.65)

For example, with N D 916 and n D 424, the p-value is 0.027, assuming a two-
tailed probability is desired. This may be compared with an estimate of 0.025 in the
normal approximation. Note that for our binomial calculation we have included
the endpoints (424 and 492). If we try to mimic more closely the normal estimate
by subtracting one-half the probability at the endpoints, we obtain 0.025, essen-
tially the normal number. We have framed this in terms of a hypothesis test, but
confidence intervals on the difference ν � μ may likewise be obtained. The estima-
tion of the ratio of Poisson means is a frequently encountered problem that can be
addressed similarly (Reid, 2003).

2.3
Fits for Small Statistics

Often we are faced with extracting parametric information from data with only a
few samplings, that is, in the case of “small statistics”. At large statistics, the central


