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11
Linear and Quadratic Discriminant Analysis, Logistic
Regression, and Partial Least Squares Regression

In this chapter, we review, for the most part, linear methods for classification. The
only exception is quadratic discriminant analysis, a straightforward generalization
of a linear technique. These methods are best known for their simplicity. A linear
decision boundary is easy to understand and visualize, even in many dimensions.
An example of such a boundary is shown in Figure 11.1 for Fisher iris data.

Because of their high interpretability, linear methods are often the first choice
for data analysis. They can be the only choice if the analyst seeks to discover linear
relationships between variables and classes. If the analysis goal is maximization
of the predictive power and the data do not have a linear structure, nonparametric
nonlinear methods should be favored over simple interpretable techniques.

Linear discriminant analysis (LDA), also known as Fisher discriminant, has been
a very popular technique in particle and astrophysics. Quadratic discriminant anal-
ysis (QDA) is its closest cousin.

11.1
Discriminant Analysis

Suppose we observe a sample drawn from a multivariate normal distribution
N(u,2) with mean vector g and covariance matrix 2. The data are D-dimen-
sional, and vectors, unless otherwise noted, are column-oriented. The multivariate
density is then
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where |X| is the determinant of X'.
Suppose we observe a sample of data drawn from two classes, each described by
a multivariate normal density

P(x|k) = (11.2)
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Figure 11.1 Class boundary obtained by linear discriminant analysis for Fisher iris data. The
square covers one observation of class versicolor and two observations of class virginica.

for classes k = 1, 2. Recall that Bayes rule gives

7 P(x|k)

P(k|x) = Pl

(11.3)
for the posterior probability P(k|x) of observing an instance of class k at point x.
The unconditional probability P(x) in the denominator does not depend on k. The
prior class probability 7, was introduced in Chapter 9; we discuss its role in the
discriminant analysis below.
Let us take a natural logarithm of the posterior odds:
8 P(k =2|x) %7, 2% [Py
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The hyperplane separating the two classes is obtained by equating this log-ratio
to zero. This is a quadratic function of x, hence quadratic discriminant analysis.
If the two classes have the same covariance matrix X; = X, the quadratic term
disappears and we obtain linear discriminant analysis.

Fisher (1936) originally derived discriminant analysis in a different fashion. He
searched for a direction q maximizing separation between two classes,
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[a" (11— )]

S(q) = ——L "2 115

=" 5, (115)

This separation is maximized at ¢ = X~ '(u; — p,). The terms not depending
on x in (11.4) do not change the orientation of the hyperplane separating the two
distributions — they only shift the boundary closer to one class and further away
from the other. The formulation by Fisher is therefore equivalent to (11.4) for LDA.
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To use this formalism for K > 2 classes, choose one class, for example the
last one, for normalization. Compute posterior odds log[P(k|x)/P(K|x)] for k =
1,..., K — 1. The logarithm of the posterior odds is additive, that is,

log[P(ifx)/P(j|x)] = log[ P(i]x)/ P(K|x)] — log[ P(j[x)/ P(K|x)]

for classes i and j. The computed K — 1 log-ratios give complete information about
the hyperplanes of separation. If we need to compute the posterior probabilities, we
require that Zf=1 P(k|x) = 1 and obtain estimates of P(k|x) from the log-ratios.
The same trick is used in other multiclass models such as multinomial logistic
regression. For prediction on new data, the class label is assigned by choosing the
class with the largest posterior probability.

In this formulation, the class prior probabilities merely shift the boundaries be-
tween the classes without changing their orientations (for LDA) or their shapes
(for QDA). They are not used to estimate the class means or covariance matrices;
hence, they can be applied after training. Alternatively, we could ignore the prior
probabilities and classify observations by imposing thresholds on the computed
log-ratios. These thresholds would be optimized using some physics-driven crite-
ria. Physicists often follow the second approach.

As discussed in Chapter 9, classifying into the class with the largest posterior
probability P(y|x) minimizes the classification error. If the posterior probabilities
are accurately modeled, this classifier is optimal. If classes indeed have multivariate
normal densities, QDA is the optimal classifier. If classes indeed have multivari-
ate normal densities with equal covariance matrices, LDA is the optimal classifier.
Most usually, we need to estimate the covariance matrices empirically.

LDA is seemingly simple, but this simplicity may be deceiving. Subtleties in LDA
implementation can change its result dramatically. Let us review them now.

11.1.1
Estimating the Covariance Matrix

Under the LDA assumptions, classes have equal covariance matrices and different
means. Take the training data with known class labels. Let M be an N x K class
membership matrix for N observations and K classes: m,; = 1 if observation n is
from class k and 0 otherwise. First, estimate the mean for each class in turn,

(11.6)

Then compute the pooled-in covariance matrix. For example, use a maximum like-
lihood estimate,

K N

% 1 . N

B =5 20 D mailen = i) e — i) (11.7)
k=1n=1

Vectors x, and fi, are D x 1 (column-oriented), and (x,—f,)(x,—ft;)" is therefore
a symmetric D x D matrix. This maximal likelihood estimator is biased. To remove
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the bias, apply a small correction:

~ N ~
5= S 11.8
N_K-M (11.8)

Elementary statistics textbooks derive a similar correction for a univariate normal
distribution and include a formula for an unbiased estimate, S* = YN (x, —
%)2/(N —1), of the variance, 02. The statistic (N — 1) S%/0? is distributed as 2 with
N — 1 degrees of freedom. We use N — K instead of N — 1 because we have K
classes. Think of it as losing one degree of freedom per linear constraint. In this
case, there are Klinear constraints for K class means.

In physics analysis, datasets are usually large, N > K. For unweighted data, this
correction can be safely neglected. For weighted data, the problem is a bit more
involved. The weighted class means are given by

N
i, = p=1 Mk WX (11.9)

3=t Mok W
The maximum likelihood estimate (11.7) generalizes to
Iy = Z Z Mok Wi (%5 — f ) (%0 — fig)" - (11.10)
k=1n=1

Above, we assume that the weights are normalized to sum to one: Y.0_, w,
= 1. The unbiased estimate is then

. x
2= % (11.11)
1- Zk—l Wk
where W, = ij_l Murwy, is the sum of weights in class k and sz =

SN muw? is the sum of squared Welghts in class k. For class-free data K = 1,
this simplifies to £ = 'y /(1 — SN w?). If all welghts are set to 1/N, (11.11)
simplifies to (11.8). In this case, the corrective term Zn=1 w? attains minimum,
and the denominator in (11.11) is close to 1. If the weights are highly nonuniform,
the denominator in (11.11) can get close to zero.

For LDA with two classes, this bias correction is, for the most part, irrelevant.
Multiplying all elements of the covariance matrix by factor a is equivalent to multi-
plying x" X~ (u, — u,) by 1/a. This multiplication does not change the orientation
of the hyperplane separating the two classes, but it does change the posterior class
probabilities at point x. Instead of using the predicted posterior probabilities direct-
ly, physicists often inspect the ROC curve and select a threshold on classification
scores (in this case, posterior probabilities) by optimizing some function of true
positive and false positive rates. If we fix the false positive rate, multiply the log-
ratio at any point x by the same factor and measure the true positive rate, we will
obtain the same value as we would without multiplication.
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Unfortunately, this safety mechanism fails for QDA, multiclass LDA, and even
LDA with two classes if the covariance matrix is estimated as a weighted combi-
nation of the individual covariance matrices, as described in Section 11.1.3. We
refrain from recommending the unbiased estimate over the maximum likelihood
estimate or the other way around. We merely point out this issue. If you work with
highly nonuniform weights, you should investigate the stability of your analysis
procedure with respect to weighting.

11.1.2
Verifying Discriminant Analysis Assumptions

The key assumptions for discriminant analysis are multivariate normality (for QDA
and LDA) and equality of the class covariance matrices (for LDA). You can verify
these assumptions numerically.

Two popular tests of normality proposed in Mardia (1970) are based on multi-
variate skewness and kurtosis. The sample kurtosis is readily expressed in matrix
notation

N 1Y a1 12
k=<2 [ E - i) (11.12)
n=1

where ji and & are the usual estimates of the mean and covariance matrix. Asymp-
totically, k has a normal distribution with mean D(D+2) and variance 8 D(D+2)/N
for the sample size N and dimensionality D. A large observed value indicates a dis-
tribution with tails heavier than normal, and a small value points to a distribution
with tails lighter than normal.

A less rigorous but more instructive procedure is to inspect a quantile-quantile
(QQ) plot of the squared Mahalanobis distance (Healy, 1968). If X is a random
vector drawn from a multivariate normal distribution with mean g and covariance
Y, its squared Mahalanobis distance (X — )" X' (X — p) has a y? distribution
with D degrees of freedom. We can plot quantiles of the observed Mahalanobis
distance versus quantiles of the x4 distribution. A departure from a straight line
would indicate the lack of normality, and extreme points would be considered as
candidates for outliers. In practice we know neither g nor X' and must substitute
their estimates. As soon as we do, we, strictly speaking, can no longer use the
%% distribution, although it remains a reasonable approximation for large N. No
statistical test is associated with this approach, but visual inspection often proves
fruitful.

Equality of the class covariance matrices can be verified by a Bartlett multivariate
test described in popular textbooks such as Andersen (2003). Formally, we test hy-
pothesis Hy: Xy = ... = X against Hy: at least two X”s are different. The test
statistic,

K
—2log V = (N — K)log|£| = ) "(n, — 1)log | X,
k=1

, (11.13)
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resembles a log-likelihood ratio for the pooled-in unbiased estimate &' and unbi-
ased class estimates 3 . Here, n; is the number of observations in class k. This
formula would need to be modified for weighted data. When the sizes of all classes
are comparable and large, —2log V can be approximated by a y? distribution with
(K —1)D(D + 1)/2 degrees of freedom (see, for example, Box, 1949). For small
samples, the exact distribution can be found in Gupta and Tang (1984). H, should
Dbe rejected if the observed value of —2log V is large. Intuitively, —2log V measures
the lack of uniformity of the covariance matrices across the classes. The pooled-in
estimate is simply a sum over class estimates (N — K)& = YF_ (ny — 1)2. If
the sum of several positive numbers is fixed, their product (equivalently, the sum
of their logs) is maximal when the numbers are equal. This test is based on the
same idea. The Bartlett test is sensitive to outliers and should not be used in their
presence.

The tests described here are mostly of theoretical value. Practitioners often apply
discriminant analysis when its assumptions do not hold. The ultimate test of any
classification model is its performance. If discriminant analysis gives a satisfacto-
ry predictive power for nonnormal samples, don’t let the rigor of theory stand in
your way. Likewise, you can verify that QDA improves over LDA by comparing the
accuracies of the two models using one of the techniques reviewed in Chapter 10.

11.1.3
Applying LDA When LDA Assumptions Are Invalid

Under the LDA assumptions, all classes have multivariate normal distributions
with different means and the same covariance matrix. The maximum likelihood
estimate (11.10) is equal to the weighted average of the covariance matrix estimates
per class:

S = Z W, . (11.14)

Above, W, = Zﬁ;l My Wy is the sum of weights in class k. As usual, we take
Y1 wn =1

In practice, physicists apply LDA when none of the LDA conditions holds. The
class densities are not normal and the covariance matrices are not equal. In these
circumstances, you can still apply LDA and obtain some separation between the
classes. But there is no theoretical justification for the pooled-in covariance matrix
estimate (11.14). It is tempting to see how far we can get by experimenting with
the covariance matrix estimate.

Let us illustrate this problem on a hypothetical example. Suppose we have two
classes with means

I3 :( 1(/)2 ) P) :( _1)/2 ) (11.15)
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and covariance matrices

21=(i ;) Ez=(_21 _21) (11.16)

The two covariance matrices are inverse to each other, up to some constant. If we
set the covariance matrix for LDA to (X + X;)/2, the predicted line of optimal
separation is orthogonal to the first coordinate axis and the optimal classification is
given by x;. If we set the covariance matrix for LDA to X'y, the optimal classification
is 2x1 — x;,. If we set the covariance matrix for LDA to X, the optimal classification
is 2% + x,. If we had to estimate the pooled-in covariance matrix on a training set,
we would face the same problem. If classes 1 and 2 were represented equally in
the training data, we would obtain (2'y + X,)/2. If the training set were composed
mostly of observations of class 1, we would obtain X';. Similarly for X',.

Let us plot ROC curves for the three pooled-in matrix estimates. As explained in
the previous chapter, a ROC curve is a plot of true positive rate (TPR) versus false
positive rate (FPR), or accepted signal versus accepted background. Take class 1 to
be signal and class 2 to be background. The three curves are shown in Figure 11.2.
Your choice of the optimal curve (and therefore the optimal covariance matrix)
would be defined by the specifics of your analysis. If you were mostly concerned
with background suppression, you would be interested in the lower left corner of
the plot and choose X', as your estimate. If you goal were to retain as much signal as
possible at a modest background rejection rate, you would focus on the upper right
corner of the plotand choose X';. If you wanted the best overall quality of separation
measured by the area under the ROC curve, you would choose (£ + 2)/2. Itis
your analysis, so take your pick!

If we took this logic to the extreme, we could search for the best a in the linear
combination £ = aX; + (1 — a)%, by minimizing some criterion, perhaps FPR
at fixed TPR. If you engage in such optimization, you should ask yourself if LDA
is the right tool. At this point, you might want to give up the beloved linearity and
switch to a more flexible technique such as QDA. In this example, QDA beats LDA
at any FPR, no matter what covariance matrix estimate you choose.
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Figure 11.2 ROC curves for LDA with three estimates of the covariance matrix and QDA.
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