Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —

Chap. c15 — 2013/9/9 — page 331 — le-tex

15
Ensemble Learning

The expression ensemble learning refers to a broad class of classification and re-
gression algorithms operating on many learners. Every learner in an ensemble is
typically weak; by itself it would predict on new data quite poorly. By aggregating
predictions from its weak learners, the ensemble often achieves an excellent pre-
dictive power. The number of weak learners in an ensemble usually varies from a
few dozen to a few thousand. One of the most popular choices for the weak learner
is decision tree. However, every classifier reviewed in this book, so far, can be used
in the weak learner capacity.

If we repeatedly trained the same weak learner on the same data, all learners
in the ensemble would be identical and the ensemble would be as poor as the
weak learner itself. Data generation (induction) for the weak learner is crucial for
ensemble construction. The weak learner can be applied to the induced data inde-
pendently, without any knowledge of the previously learned weak models, or taking
into account what has been learned by the ensemble participants, so far. The train-
ing data can be then modified for consecutive learners. The final step, undertaken
after all weak learners have been constructed, is aggregation of predictions from
these learners.

Approaches to ensemble learning are quite diverse and exercise a variety of choic-
es for data induction and modification, weak learner construction and ensemble
aggregation. The field of ensemble learning is comprised of algorithms derived
from different principles and methodologies. In this chapter, we review a few well-
known ensemble algorithms. By necessity we omit many others.

Ideas thatlaid foundation to ensemble learning can be traced to decades ago. The
first practical ensemble algorithms came out in the mid 1990s. The first convinc-
ing application of an ensemble technique to particle physics is particle identifica-
tion by boosted trees at MiniBOONE (Yang et al., 2005). At the time of this writing,
ensemble learning has become fairly popular in the particle and astrophysics com-
munities, although its applications have been mostly confined to AdaBoost and
random forest. We aim to broaden the arsenal of the modern physicist with other
algorithms.

Statistical Analysis Techniques in Particle Physics, First Edition. Ilya Narsky and Frank C. Porter.
©2014 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2014 by WILEY-VCH Verlag GmbH & Co. KGaA.

331

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —

332

Chap. c15 — 2013/9/9 — page 332 — le-tex

15 Ensemble Learning

15.1
Boosting

A popular class of ensemble methods is boosting. Algorithms in this class are se-
quential: the sampling distribution is modified for every weak learner using in-
formation from the weak learners constructed earlier. This modification typically
amounts to adjusting weights for observations in the training set, allowing the next
weak learner to focus on the poorly studied region of the input space.

In this section, we review three theoretical approaches to boosting, namely min-
imization of convex loss by stagewise additive modeling, maximization of the min-
imal classification margin, and minimization of nonconvex loss. The AdaBoost al-
gorithm, which has gained some popularity in the physics community, can be ex-
plained in several ways. In one interpretation, AdaBoost works by minimizing the
(convex) exponential loss shown in Table 9.1. In another interpretation, AdaBoost
achieves high accuracy by maximizing the minimal margin. These two interpre-
tations gave rise to other successful boosting algorithms, to be discussed here as
well. Boosting by minimizing nonconvex loss can succeed in the regime where
these two approaches fail, that is, in the presence of significant label noise. We
focus on binary classification and review multiclass extensions in the concluding
section.

15.1.1
Early Boosting

An algorithm introduced in Schapire (1990) may be the first boosting algorithm
described in a journal publication. Assume that you have an infinite amount of
data available for learning. Assume that the classes are perfectly separable, that is,
an oracle can correctly label any observation without prior knowledge of its true
class. Define your objective as constructing an algorithm such that, when applied
to independent chunks of data drawn from the same parent distribution, learns
a model with generalization error at most € at least 100(1 — 3)% of the time. As
usual, generalization error is measured on observations not seen at the learning
(training) stage.

At the core of this algorithm, there is a simple three-step procedure which works
as follows. Draw a training set. Learn the first classifier on this set. Form a new
training set with observations correctly classified and misclassified by the first clas-
sifier mixed in equal proportion. Learn the second classifier on this set. Make a
third training set by drawing new observations for which the first and second clas-
sifiers disagree. Learn the third classifier on this set. The three training sets must
be sufficiently large to provide the desired values of € and 6. To predict the label for
anew observation using the learned three-step model, put this observation through
the first two classifiers. If they agree, assign the predicted class label. If they do not
agree, use the label predicted by the third classifier. This completes one three-step
pass.

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —

Chap. c15 — 2013/9/9 — page 333 — le-tex

15.1 Boosting

Algorithm 1 AdaBoost for two class- equals one if its argument is true and
es. Class labels y, are drawn from the zero otherwise.
set {—1, +1}. The indicator function I

Input: Training data {x,, y,, wn}f;’:l and number of iterations T

e e 1
1: initialize wil) =—+—forn=1,...,N
D=1 Wn

2. fort =1to T do
3: Train classifier on {xn,yn,w,(f)}n]‘]=1 to obtain hypothesis h; : x —
{=1,+1}
Calculate training error ¢, = Y. _, wl) I(yn # hi(xn))
ife;, == 0ore;, > 1/2 then
T=t—-1
break loop
end if
Calculate hypothesis weight a; = 1 log

R A A

1—6;
€t
. . 1) expj—
10: Update observation weights O G ej‘})’[% ynh ()]

N1 Wi exp[—ayyn i (x0))

11: end for
Output: f(x) = 3/, a,hi(x)

Learn the classifiers in this three-step procedure recursively, using the same
three-step procedure. At every level of recursion, relax the desired value of € forcing
it to gradually approach 1/2. When e gets sufficiently close to 1/2, stop and return
a weak learner whose generalization error is below € at this recursion level (and
therefore barely below 1/2).

This algorithm is mostly of theoretical value. It relies on construction of the first
and second classifier in the three-step scheme with known accuracies, but in prac-
tice these are not known. A remarkable accomplishment of Schapire’s paper is the
proof of concept. To construct a model with an arbitrarily small classification error,
all you need is a classifier assigning correct labels to a little more than half of the
data!

15.1.2
AdaBoost for Two Classes

It took a few years after Schapire’s paper to develop successful practical algorithms.
Proposed in Freund and Schapire (1997), AdaBoost (adaptive boosting) earned a
reputation of a fast and robust algorithm with an excellent accuracy in high-di-
mensional problems. AdaBoost and similar boosting methods were named “the
best available off-the-shelf classifiers” in Breiman (1998). We show this famous al-
gorithm here with a simple modification to account for the initial assignment of
observation weights (see Algorithm 1).

333

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —

334

Chap. c15 — 2013/9/9 — page 334 — le-tex

15 Ensemble Learning

AdaBoost initializes observation weights to those in the input data and enters a
loop with at most T iterations. At every iteration, AdaBoost learns a weak hypoth-
esis h, mapping the space of input variables X onto the class set {—1,+1}. The
hypothesis is learned on weighted data, and the weights are updated at every pass;
hence, every time AdaBoost learns a new weak hypothesis. After learning a new
weak hypothesis, AdaBoost estimates its error by summing the weights of observa-
tions misclassified by this hypothesis. AdaBoost then computes the weight for this
hypothesis using line 9 in Algorithm 1. The hypothesis weight a; approaches 400
as the error approaches 0, and a; approaches 0 as the error approaches 1/2. If the
error is not in the (0,1/2) interval, AdaBoost cannot compute a, and exits. If the
error is in the allowed range, AdaBoost multiplies the weights of the misclassified
observations by (1 — €;)/e; and the weights of the correctly classified observations
by the inverse of this expression. Then AdaBoost renormalizes the weights to keep
their sum at one. The soft score f(x) returned by the final strong hypothesis is a
weighted sum of predictions from the weak hypotheses. The predicted class is +1
if the score is positive and —1 otherwise.

15.1.2.1 Example: Boosting a Hypothetical Dataset

Let us examine step by step how AdaBoost separates two classes in the hypotheti-
cal dataset we used in Chapter 13. We show these steps in Figure 15.1. The weak
learner for AdaBoost is a decision stump (a tree with two leaves) optimizing the Gi-
ni index. Before learning begins, each observation is assigned a weight of 1/7. The
first stump separates the two lower stars from the other five observations. Since
the upper leaf has more crosses than stars, the two upper stars are misclassified
as crosses and their weights increase. The second split separates the left star from
the rest of the observations. Because the top star has a large weight, the right leaf
is dominated by the stars. Both leaves predict into the star class, and the weights
of the crosses increase. The third stump is identical to the second stump. Now the
crosses in the right leaf have more weight than the three stars. The three stars in the
right leaf are misclassified and their weights increase. The fourth stump separates
the top star from the rest.

In about ten iterations, AdaBoost attains perfect class separation. The light rect-
angle in Figure 15.2a shows the region with a positive classification score. The re-
gion with a negative score is shown in semi-dark gray, and the region with a large
negative score is shown in dark gray. The class boundary does not look as sym-
metric as it did in Chapter 13, but keep in mind that we operate under two severe
constraints: the limited amount of statistics and the requirement to use decision
stumps in the space of the original variables. From the computer point of view, this
boundary is as good as the one in Figure 13.1!

Evolution of the observation weights through the first ten iterations is shown in
Figure 15.2b. The three crosses always fall on the same leaf, and their weights are
therefore always equal. The same is true for the two lower stars.

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —
Chap. c15 — 2013/9/9 — page 335 — le-tex

15.1 Boosting | 335

Iteration 1 Iteration 2
2 2
|
15 15 | 0
1 1 :-:
0.5 + 05F Ak ol
2
0 S E—— 0 I
i e e A e B + +
0.5 05 : : 4
.
| | PSR K !
il
15 15 !
il
2 2 il ; i
2 1 0 1 2 Z; 1 0 1 2
Iteration 3 Iteration 4
2 T 2
1
1
1.5 : i 1.5
| I
1 i L ST LFSOTSFFOPL SOLUOSTOSOTIS IO SPOSIPSPRIOt
1
{11 TR : o 0.5 4
1
0 ! 0
I o He *
0.5 : : 4 0.5 i
1
1 ! 1
i
-1.5 i 1.5
1
2 - : - 2 : ; ;
2 -1 0 1 z 2 -1 0 1 2

Figure 15.1 First four decision stumps imposed by AdaBoost. The size of each symbol is pro-
portional to the observation weight at the respective iteration before the stump is applied.

0.5
B Initial weight
¢ Bottom and right stars
0.4 | Left star 1
+ @ Top star
2 + Cross
303 z]
c L
0
= 8
A - & |
8] & '
0.1 * %
o o B IR 1
0 .
0 2 4 8 10

Iteration

Figure 15.2 (a) Predicted classification scores, and; (b) evolution of observation weights in the
first ten iterations.

15.1.2.2 Why is AdaBoost so Successful?

One way to explain AdaBoost is to point out that every weak hypothesis is learned
mostly on observations misclassified by the previous weak hypothesis. The strength
of AdaBoost can be then ascribed to its skillful use of hard-to-classify observations.
This statement, although true in some sense, is insufficient for understanding why
AdaBoost works so well on real-world data. Indeed, a few questions immediately
arise for Algorithm 1:

Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics —

336

Chap. c15 — 2013/9/9 — page 336 — le-tex

15 Ensemble Learning

e Why use that specific formula on line 9 to compute the hypothesis weight a;?

e Why use that specific formula on line 10 to update the observation weights?

e What is the best way to construct h, on line 3? If we chose a very strong learner,
the error would quickly drop to zero and AdaBoost would exit. On the other
hand, if we chose a very weak learner, AdaBoost would run for many iterations
converging slowly. Would either regime be preferable over the other? Is there a
golden compromise?

e What is the best way to choose the number of learning iterations T?

e Could there be a more efficient stopping rule than the one on line 5? In partic-
ular, does it makes sense to continue learning new weak hypotheses after the
training error for the final strong hypothesis drops to zero?

These questions do not have simple answers. A decade and a half after its inven-
tion, AdaBoost remains, to some extent, a mystery. Several interpretations of this
algorithm have been offered. None of them provides a unified, coherent picture
of the boosting phenomenon. Fortunately, each interpretation led to discoveries of
new boosting algorithms. At this time, AdaBoost may not be the best choice for the
practitioner, and is most certainly not the only boosting method to try.

In the following sections, we review several perspectives on boosting and de-
scribe modern algorithms in each class. For a good summary of boosting and
its open questions, we recommend Meir and Ratsch (2003); Buhlmann and
Hothorn (2007), as well as two papers followed by discussion, Friedman et al.
(2000) and Mease and Wyner (2008).

15.1.3
Minimizing Convex Loss by Stagewise Additive Modeling

AdaBoost can be interpreted as a search for the minimum of a convex function.
Put forward by three Stanford statisticians, Friedman, Hastie and Tibshirani, in
the late 1990s, this interpretation has been very popular, if not dominant, and used
as a theoretical basis for new boosting algorithms. We describe this view here.
Suppose we measure the quality of a binary classifier using exponential loss,
Uy, f) = e ¥/, for labels y € {—1,+1} and scalar soft score f(x). Learning a
good model f(x) over domain X then amounts to minimizing the expected loss

Exy[(Y, f(X))] = /[ef(")P(Y = —1|x) + e /¥ P(Y = +1|x)]P(x)dx
X
(15.1)

for pdf P(x) and conditional probability P(y|x) of observing class y at x. The Ad-
aBoost algorithm can be derived by mathematical induction. Suppose we learn t—1
weak hypotheses by AdaBoost to obtain an ensemble

0 if t=1
t—1
filx) = S ahi(x) if t>1 ° (15:2)

i=1

