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Figure 4.7 Dependence of percentile and BCa
bootstrap intervals (68% CL) on the number
of bootstrap samples. The top pair of curves
are the estimated upper limit of the interval,
and the bottom pair the lower limit. In each
pair, the upper curve is from the BCa method,

and the lower is from the percentile method.
All bootstrap replicas are independent, so the
local scatter of the points indicates the statis-
tical variation from the resampling process.
The sample is size 20 from N(0, 1). The sam-
ple variance is 0.568 for this sample.

Table 4.1 Comparing coverage of estimated 68% confidence intervals from the bootstrap per-
centile and BCa methods.

Percentile BCa

Target tail probability 0.1587

Low tail probability 0.0826 0.2093
High tail probability 0.3035 0.1889

Target coverage 0.6827

Coverage 0.6139 0.6018

4.5
Cross-Validation

In later chapters we develop a variety of classification algorithms. We can view the
typical situation as one where we have a set of understood data that we wish to learn
from, and thence make predictions about data with some unknown characteristic.
It is important to know how good our prediction is. Another situation occurs when
we wish to make a prediction in the familiar regression setting. Again, we wish to
know how good our prediction is. We may attempt to provide a measure for this
with the expected prediction error (EPE), defined below. The EPE requires knowing
the sampling distribution, which is in general not available. Thus, we must find
a means to estimate EPE. A technique for doing this is the resampling method
known as cross-validation.
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To define the expected prediction error, consider the regression problem (it could
also be a classification problem, as we shall discuss in Section 9.4.1) where we wish
to predict a value for random variable Y, depending on the value for random vari-
able X. In general, X is a vector of random variables, but we will treat it as one-di-
mensional for the moment. The joint probability distribution for X and Y is F(x , y ),
with pdf f (x , y ). We wish to find the “best” prediction for Y, given any X D x . That
is, we look for a function r(x ) providing our prediction for Y. What do we mean
by “best”? Well, that is up to us to decide; there are many possibilities. Howev-
er, the most common choice is an estimator that minimizes the expected squared
deviation, and this is how we define the expected (squared) prediction error:

EPE(r) D Ef[Y � r(X )]2g D
Z

[y � r(x )]2 f (x , y )dx d y . (4.38)

Note that the expectation is over both X and Y; it is the expected error (squared)
over the joint distribution. The function r that minimizes EPE is the regression
function

r(x ) D E(Y )X Dx D
Z

y f (x , y )d y , (4.39)

that is, the conditional expectation for Y, given X D x . Fortunately, this is a nicely
intuitive result. We remark again that x and y may be multivariate.

How might we estimate the EPE? For a simple case, consider a bivariate dataset
D � f(Xn , Yn), n D 1, . . . , Ng. Suppose we are interested in finding the best
straight line fit. In this case, our regression function is `(x ) D ax C b. We estimate
parameters a and b by finding Oa and Ob that minimize (assuming equal weights for
simplicity)

NX
nD1

�
Yn � Oa Xn � Ob

	2
. (4.40)

The value of a new sampling is predicted given XNC1:

OYNC1 D Oa XNC1 C Ob . (4.41)

We wish to estimate the EPE for YNC1.
A simple approach is to divide our f(Xi , Yi ), i D 1, . . . , Ng dataset into two pieces,

perhaps two halves. Then one piece (the training set) could be used to determine
the regression function, and the other piece (the testing set) could be used to esti-
mate the EPE. However, this seems a bit wasteful, since we are only using half of
the available data to obtain our regression function, and we could do a better job
with all of the data. The next thing that occurs to us is to reverse the roles of the
two pieces and somehow average the results, and this is a pretty good idea. But let
us take this to an extreme, known as leave-one-out cross-validation.
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The algorithm for leave-one-out cross-validation is as follows:

1. Form N subsets of the dataset D, each one leaving out a different datum, say
(Xk , Yk ). We will use the subscript �k to denote quantities obtained omitting
datum (Xk , Yk ). Likewise, we let D�k be the dataset leaving out (Xk , Yk ).

2. Do the regression on dataset D�k , obtaining regression function r�k .
3. Using this regression predict the value for the missing point:

OYk D r�k (Xk ) . (4.42)

4. Repeat this process for k D 1, . . . , N . Estimate the EPE according to

1
N

NX
kD1

( OYk � Yk )2 . (4.43)

Let us try an example application. Suppose we wish to investigate polynomial
regression models for a dataset (perhaps an angular distribution or a background
distribution). For example, we have a dataset and wish to consider whether to use
the straight line relation

Y D a X C b , (4.44)

or the quadratic relation

Y D a X 2 C b X C c . (4.45)

We know that the fitted errors for the quadratic model will always be smaller
than for the linear model. A common approach is to compute the sum of squared
fitted errors, and apply some criterion on the difference in this quantity between
the two models, often resorting to an approximation with a �2 distribution. That is,
we use the Snedecor F distribution to compare the �2 values from fits for the two
models. However, we may not wish to rely on the accuracy of this approximation.
In this case, cross-validation may be applied.

The predictive error is not necessarily smaller with the additional adjustable pa-
rameters. We may thus use our estimated prediction errors as a means to decide
between models. Suppose, for example, that our data is actually sampled from the
linear model, as in the filled circles in Figure 4.8a. We do cross-validation estimates
of the prediction error for both the linear and quadratic fit models, and take the dif-
ference (linear EPE minus quadratic EPE). The distribution of this difference, for
100 such “experiments”, is shown in Figure 4.8b. Choosing the linear model when
the difference is larger than zero gets it right in 84 out of 100 cases. The MATLAB
function crossval is used to perform the estimates, with calls of the form:

crossval(’mse’,x,y,’Predfun’,@linereg,’leaveout’,1);

Alternatively, suppose that our data is sampled from a quadratic model (with a
rather small quadratic term), as in the plus symbols in Figure 4.8a. We do cross-
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Figure 4.8 Leave-one-out cross-validation
example. (a) Data samples, each of size
100, generated according to a linear model
Y D X (filled circles) or a quadratic model
Y D X C 0.03X 2 (plus symbols). (b) Distri-

bution of linear model minus quadratic model
EPE for data generated according to a linear
model. (c) Distribution of linear model mi-
nus quadratic model EPE for data generated
according to a quadratic model.

validation estimates of the prediction error for both the linear and quadratic fit
models, and again take the difference. The distribution of this difference, for 100
such experiments, is shown in Figure 4.8c. Choosing the quadratic model when
the difference is less than zero gets it right in 79 out of 100 cases.

Leave-one-out cross-validation is particularly suitable if the size of our dataset
is not large. However, as N becomes large, the required computer resources may
be prohibitive. We may back off from the extreme represented by leave-one-out
cross-validation and obtain K-fold cross-validation. In this case, we divide the dataset
into K disjointed subsets, of essentially equal size m  N/K. Leave-one-out cross-
validation corresponds to K D N .

In K-fold cross-validation, the model is trained on the dataset consisting of every-
thing except the “held-out” sample of size m. Then the prediction error is obtained
by applying the model to the held-out validation sample. This procedure is applied
in turn for each of the K held-out samples, and the results for the squared predic-
tion errors averaged.

We have a choice for K; how can we decide? To get some insight, we note that
there are three relevant issues: computer time, bias, and variance in our estimat-
ed prediction error. The choice of K may require compromises among these. In
particular, for large datasets, we may be driven to small K by limited computing
resources.

To understand the bias consideration, we introduce the Learning Curve, illustrat-
ed in Figure 4.9. This curve shows how the expected prediction error decreases as
the training set size is increased.1) We may use it to understand how different choic-
es of folding can lead to different biases in estimating the EPE. Except for very small
dataset sizes, if we use N-fold cross-validation, we use essentially the whole dataset

1) It is conventional in the classification problem to show one minus the error rate as the learning
curve.
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Figure 4.9 Computing the learning curve
for cross-validation. (a) The dependence of
estimated predicted error for leave-one-out
cross-validation on sample size for several
data samples. The data is generated according

to the linear model as in Figure 4.8. (b) The
learning curve, estimated by averaging togeth-
er the results from 100 data samples. That is,
100 curves of the form illustrated in the left
plot are averaged together.

for each evaluation of the EPE, and our estimator is close to unbiased (though as we
see in Figure 4.9a, it may have a large variance). However, consider what happens
if we go to smaller K values. To make the point, consider a dataset of size 20, and
K D 2. In this case, our estimated EPE will be based on a training sample of size
10. Looking at the learning curve, we see that yields an overestimate of the EPE for
N D 20.

On the other hand, the larger K is, the more computation is required, so the
lowest acceptable K is preferred. A much more subtle issue is the variance of the
estimator (Breiman and Spector, 1992). As a rule of thumb, it is proposed that K
values between 5 and 10 are typically approximately optimal. Performance on our
regression example above degrades somewhat from leave-one-out to K D 5 or 10.

We will see in the next chapter another application of cross-validation, to the
problem of optimizing smoothing in density estimation.

4.6
� Resampling Weighted Observations

It is not uncommon to deal with datasets in which the samplings are accompanied
by a nonnegative “weight”, w. For example, we may have samples corresponding
to different luminosities that we wish to incorporate into an analysis. Hence, we
describe our dataset as a set of pairs, (xn , wnI n D 1, . . . , N ), where wn is the weight
associated with the sampling xn (xn could also be a vector). The question arises:
How can we apply resampling methods to such a dataset?


