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Section 14.4 of the book discusses pruning decision trees. Similarly, weak
learners can be often removed from an ensemble without a significant loss of
the predictive power. Simplifying an ensemble can make it more robust to over-
fitting and reduce the memory footprint. This simplification is called pruning,
regularization, or shrinkage in the literature.

To prune, one could inspect the learning curve on cross-validated or test
data and chop off learners above a certain index. For example, the learning
curve for boosted decision stumps in Fig. 15.3 shows some degradation past 50
stumps. The 51st and later stumps can be removed.

A related technique is post-fitting. After an ensemble is constructed, coef-
ficients (weights) of the weak learners are optimized using a certain criterion.
This criterion may, but is not required to, be identical to the loss minimized by
the ensemble such as, e.g., the exponential loss for GentleBoost.

Pruning and post-fitting can be carried out at once. After the learner weights
are (re)optimized, some of them can take small values. The respective learners
can be then omitted from the ensemble.

Post-fitting a criterion (loss) motivated by physics can be an attractive way
of improving the ensemble performance. Suppose the analysis aims at maxi-
mizing s/

√
s+ b, where s and b are the expected signal and background. The

analysis could then proceed in two steps. First, an ensemble could be grown
by minimizing the exponential loss. Second, the signal significance could be
maximized by searching for the best threshold on the soft score predicted by
the ensemble. The second step could be replaced by simultaneous optimization
of the learner weights and threshold.

An easy problem arises if the criterion of interest is a convex function of the
learner weights with analytic expressions for the gradient and Hessian. Typi-
cally, criteria motivated by physics satisfy neither of these conditions. Because
an ensemble often has a few dozen to a few thousand weak learners, the prob-
lem is high-dimensional. The learner weights must be non-negative and, since
multiplying all weights by the same factor cannot change the ROC curve, must
satisfy a constraint on their sum. Large-scale derivative-free optimization of a
non-convex function with parameter bounds and linear constraints is hard.

[ZWT02] assign a random weight to every learner in an ensemble and evolve
these weights using a genetic algorithm. An individual in the evolving popu-
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lation is a weight vector α ≡ {αt}Tt=1 with 0 ≤ αt ≤ 1. [ZT03] fix the weight
vector α and evolve a vector of bits representing inclusion in the ensemble pre-
diction. Other plausible techniques are simulated annealing and pattern search,
although we are not aware of their applications to ensemble pruning. These al-
gorithms allow optimization of an arbitrary criterion, but convergence of these
algorithms for large-scale problems can be poor. Generally, any improvement in
the criterion over the value computed for the initial weight assignment should
be considered as success.

An alternative approach is pruning by a computationally simple heuristic
algorithm. [MD97] plot average error against interrater agreement for all pairs
of weak learners in an ensemble and find a convex hull of points closest to the
origin. Learners contributing to the points on this hull are retained, and the
rest is discarded. Although fast and intuitive, this algorithm can lead to a
significant loss of the predictive power. Other heuristic algorithms of this type
can be found in [Kun04] and [Rok10].

In our experience, the most reliable way of pruning ensembles is by mini-
mizing a convex, twice differentiable loss with a penalty term. In the book, we
refrain, with few exceptions, from discussing regression models. Here we men-
tion regression ensembles because they allow for efficient regularization. For
binary classification, signal can be coded as 1 and background can be coded as
0. A regression ensemble such as random forest [Bre01] or LSBoost [Fri01] can
be then grown by minimizing the mean squared error (MSE). The ensemble pre-
diction is computed by averaging predictions from individual regression trees,
f(x) =

∑T
t=1 αtht(x). Class labels can be predicted by introducing a threshold

on the regression response: Assign an observation to class 1 if the response is
above 0.5 and assign to class 0 otherwise. The penalized MSE loss is then

L̃mse =

N∑
n=1

wn

(
yn −

T∑
t=1

αtht(xn)

)2

+ λ

T∑
t=1

αt (1)

for a non-negative parameter λ and non-negative learner coefficients αt. Above,
wn are observation weights adding up to one, yn ∈ {0, 1} are true class labels,
and xn are points in the training set. Penalizing on the L1 norm of the vector
of coefficients is called lasso regularization. By duality, minimizing L̃mse is
equivalent to solving

min
α

N∑
n=1

wn

(
yn −

T∑
t=1

αtht(xn)

)2

subject to

T∑
t=1

αt ≤ c. (2)

The non-negative parameter c decreases as λ increases. The geometry of the
lasso constraint is a simplex with vertices at +c and −c along each coordinate.
As c decreases, the coefficients are shrunk toward zero with some being set
exactly to zero due to the simplex geometry. The fraction of zero coefficients
increases as c continues to decrease. The lasso penalty can produce a highly
sparse solution without a significant loss in the predictive power. An efficient
coordinate-descent algorithm for minimization of L̃mse is described in [FHT10].

The lasso penalty can be applied to the exponential loss as well. A generic
tool for constrained optimization such as the fmincon utility available from the
Optimization Toolbox in MATLAB can be used, if the data are not too big, to
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Figure 1: Distributions of tree weights (left), test classification error (middle)
and test exponential loss (right) before and after lasso regularization.

solve

min
α

N∑
n=1

wn exp

(
−yn

T∑
t=1

αtht(xn)

)
subject to

T∑
t=1

αt ≤ c (3)

for class labels yn ∈ {−1,+1}.
Regularization of the exponential loss is demonstrated using the K/π BaBar

data described in Section 15.2.4. An ensemble of 500 trees with minimal leaf size
1000 is grown by AdaBoost with learning rate 0.1. This ensemble gives 7.6%
test error. The optimization problem (3) is solved numerically by fmincon.
Parameter c is set to one half of the L1 norm of the initial coefficient vector,

c =
∑T

t=1 α
(0)
t /2. The ensemble is regularized using the same data on which it

is trained. Due to regularization, the exponential loss measured on the training
data increases from 0.23 to 0.30.

Distributions of the tree coefficients before and after regularization, and the
respective learning curves are shown in Fig. 1. The narrow peak in the his-
togram for the regularized coefficients indicates a large fraction of the trees
with weights close to zero. To display the learning curves after regularization,
we sort the weak learners (trees) by their regularized coefficients in descending
order. The improvement in the test error and exponential loss is slight. Al-
most the same performance could be obtained by stopping AdaBoost after 100
iterations. Notice however that regularization prevents overtraining seen in the
exponential loss curve at large iterations.
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