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Over the last two decades, various multiclass extensions of the binary SVM
formalism have been put forward. It was hoped that these extensions would lead
to more accurate classification than simple-minded reduction strategies such
as “one versus one” (OVO) and “one versus all” (OVA). This hope remains
unfulfilled, at least for data with a few dozen or fewer classes.

Here, we give a more elaborate description of these multiclass extensions,
briefly discussed in Section 13.5.4. We refrain from presenting the full mathe-
matical formalism of these techniques and merely outline their main ideas. As in
the book, we do not recommend using these extensions in practice. Instead, we
encourage the reader to use the standard schemes summarized in Chapter 16. If,
despite our recommendation, you wish to invest time in learning SVM-specific
multiclass extensions, you may find this material useful.

Let us introduce some notation. For data with K > 2 classes, replace the
scalar soft score f(x) with a score vector f = {fk}Kk=1. For simplicity, let us
focus on the linear problem. The k-th element of this vector,

fk(x) = βT
kx+ β0k, (1)

defines a decision boundary for class k. Concatenating column-vectors βk into
a matrix B of size D × K for D variables and K classes, write an equivalent
matrix representation,

f(x) = BTx+ β0, (2)

where β0 is a vector of bias terms with K elements. As usually, x is a column-
vector of length D, and the training matrix X is formed by transposing x for
every observation into a row-vector and concatenating such row-vectors hori-
zontally. The label is predicted into the class k with the maximal score fk.

[Vap98] and [WW99] use multiclass hinge loss

`(y,f) =
∑
k 6=y

[2 + fk − fy]+ . (3)

Above, y is the true class label and the summation is taken over the predicted
scores for all classes but the true one. The solution is not unique since adding
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a constant to each fk does not change the loss value. To ensure uniqueness,
[LLW04] use a modified version of the loss,

`(y,f) =
∑
k 6=y

[
fk +

1

K − 1

]
+

, (4)

requiring
∑K

k=1 fk = 0. In their approach, a support vector for class y is given
by f with fy = 1 and fk 6=y = −1/(K − 1). Either formulation can be reduced
to the binary problem K = 2 by putting fy = −fy for the false class y. The
loss is then zero for fy ≥ 1, and we get an equivalent of the binary expression
(13.34).

[WW99] and [LLW04] search for the optimal separation by minimizing the

trace tr
(
BTB

)
, or equivalently the square of the Frobenius norm ‖B‖2F . They

use one slack variable per observation per class. The K − 1 terms in the loss
function for every observation translate into K − 1 linear constraints reducing
the number of independent slack variables to N(K − 1), where N is the size of
the training set. The solution,

f(x) = ATXx, (5)

is given by an N × K matrix of kernel expansion coefficients A composed of
elements αnk with αnyn

= 0. The coefficients A can be found by solving a
quadratic problem similar to the one in Eq. (13.38). A naive implementation
of a quadratic programming solver would require O(N2K2) memory storage.
A decomposition technique [HL02] reduces the memory requirement and thus
allows training these multiclass extensions on large datasets.

[CS01] set the multiclass loss to

`(y,f) =
∑
k 6=y

[1 + fk − fy]+ . (6)

and, similar to the other authors, minimize tr
(
BTB

)
. The special case K = 2

is recovered by setting f = f+1 − f−1 and minimizing βTβ for β = β+1 − β−1.
They reduce the number of slack variables to N , one per observation. This
slack variable corresponds to the constraint imposed on the false class with the
largest score, maxk 6=y (1 + fk − fy) ≤ 0. Thus instead of separating the true
class from all other classes, [CS01] focus on maximizing the distance between
the true class and its closest competitor, also known as the classification mar-
gin. The solution A has N(K − 1) independent elements because N elements
are removed by requiring A1K×1 = 0N×1. Unlike in [WW99] and [LLW04], the
primal problem with fewer slack variables gives rise to a dual Lagrangian with
a simple structure. The latter can be optimized by a simple iterative algorithm.
[CS01] optimize A one row at a time. With all rows but one fixed, each iteration
step requires solving a quadratic problem with K − 1 variables. Further com-
putational improvements, especially useful when the number of classes is large,
are proposed in [TJHA05] and [BBGW07].

[PCST00] train K(K − 1)/2 binary SVM classifiers to separate every class
from every other class. Predictions for new observations are then computed by
a special voting scheme. The authors explain this voting scheme in terms of
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directed acyclic graphs (DAG), but it can be just as easily explained in terms
of deque operations. Make a deque with K elements, one per class, numbered
from 1 to K. When a new observation is received, classify it using the SVM
model trained to separate class 1 and class K. Remove the losing class from
the deque, that is, pop the front or back element. Then classify this observation
using the SVM model trained to separate the remaining first and last elements
in the deque. Continue until the deque is composed of one class. Classify the
observation into this class. In this approach, the predicted label can depend on
the class order in the deque. Empirical studies [PCST00] find little correlation
between the classification error and class order. Because in physics analysis
one typically wants some measure of classification confidence, the lack of clas-
sification score predictions in the DAGSVM voting scheme would be seen as a
disadvantage.

[TH07] construct a decision tree based on classification margins between
groups of classes. Put the entire training data with K classes in the root node
of the tree. Find the optimal split to partition the classes in two groups, G1 and
G2. Send observations for classes in G1 to the left child and send observations
for classes in G2 to the right child. Continue splitting recursively until every
leaf node contains observations of one class only.

[TH07] propose several optimality criteria for finding the best split. The
greedy approach maximizes the SVM margin between groups G1 and G2 over
all possible partitions. A simple-minded implementation of this approach could
be slow for many classes; for instance, one would have to choose the best split
among 2K−1 − 1 binary classifiers in the root node. To speed up computation,
[TH07] first train K(K − 1)/2 binary classifiers using the OVO strategy and
record the classification margin for each pair of classes. At the second step,
they construct a complete linkage clustering tree using the recorded margin as a
measure of distance. A complete linkage tree works bottom up: At the bottom
level, the tree puts every class in a separate cluster, and at each consecutive
level, the tree forms a new cluster by combining one of the existing clusters
with its furthest neighbor. “Furthest” here implies maximal margin. At the
last step, [TH07] start at the top of the constructed linkage tree and move down
using a simple fast algorithm to find the optimal binary split for the linkage
clusters at each level. The obtained decision tree is identical to the one grown
in a top-down manner by inspecting all possible partitions.

The constructed decision tree can provide insights not available from other
multiclass schemes. Similar to DAGSVM, the margin tree can predict labels
but not scores. [TH07] consider linearly separable data only, but their analysis
could be extended to include non-separable data and other kernel functions.

Every proposal mentioned in this section includes an empirical study, often
demonstrating a slight improvement in classification accuracy over OVA and
OVO. Dedicated comparative studies of various multiclass SVM extensions can
be found in [HL02] and [SAT+05]. None of these studies convincingly shows
superiority of the advanced extensions over OVO and OVA. [RK04] argue that
classification accuracy obtained by DAGSVM and the described single machine
methods can be reproduced in the OVA approach by fine-tuning the base binary
classifiers.

[HL02], [SAT+05], [PCST00], and [WW99] compare the training time and
number of support vectors for a broad variety of real-world datasets with up
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to 26 classes. There is no clear winner in sparsity1. The OVO strategy is
consistently one the fastest options. The same holds for DAGSVM since its
training stage is equivalent to that of OVO. The margin tree algorithm can
incur extra time to construct a linkage tree, but it should be small compared
with the time required to trainK(K−1)/2 binary learners. According to [HL02],
the algorithms [WW99] and [CS01] can train as fast as OVO for some datasets
and be an order of magnitude slower than OVO for others. OVA, although
consistently slower than OVO, is less prone to such extreme outcomes. Binary
SVM classifiers for OVO and OVA in these studies are typically trained by the
SMO algorithm described in Section 13.5.3.
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