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Solution: chapter 3, problem 8:
In this exercise, we wish to compare performance of the Anderson-Darling (AD)

and Kolmogorov-Smirnov (KS) tests (sections 3.3.1 and 3.3.2 in Narsky and Porter
(2014a), referred to hereafter as NP). The null hypothesis is sampling from a standard
normal distribution:

H0 : f(x) =
1√
2π
e−

1
2x

2

. (3.1)

This is completely specified, hence a simple hypothesis. However, the alternative hy-
pothesis is “not standard normal” so the test is composite. We are asked to evaluate
the power of the specified test algorithms in rejecting data sampled from a Cauchy
distribution with location parameter 0 and full width at half maximum (FWHM)
equal to that of a standard normal. The FWHM of the standard normal is Γ =

2
√
−2 log 1

2 ≈ 2.3548. Thus we’ll be measuring power to reject sampling from
the following Cauchy:

H1 : f(x) =
Γ

2π

1

x2 + (Γ/2)2
. (3.2)

Let us assume we have a sample of size N (= 100 in the problem statement, but
we’ll look at N = 10 as well), x = x1, . . . , xN . Denote the empirical cdf (ecdf) by
FN . The Kolmogorov-Smirnov test statistic is (Eq. 3.31 in NP):

ρ(F, FN ) = sup
x∈(−∞,∞)

|F (x)− FN (x)|. (3.3)

It is noted in NP that the distribution of the KS statistic is independent of the sam-
pling distribution for given sample size (NP exercise 3.6), with distribution in NP
Eqs. (3.32) and (3.33), and shown in NP Fig. 3.4.
The Anderson-Darling test statistic is defined in Eq. 3.35 of NP:

A2
N (x) = N

∫ y=∞

y=−∞

[FN (y)− F (y)]2

F (y) [1− F (y)]
dF (y). (3.4)

We may do the integral and obtain an expression that is readily computed. First, let
z be the ordered set of sampled values x, i.e., z1 < z2 < · · · < zN . Notice that

FN (x) =
n

N
, for zn ≤ x < zn+1 (3.5)

where z0 ≡ −∞ and zN+1 ≡ ∞. Define

Gn ≡ F (zn), (3.6)

with G0 ≡ 0. We may then express the integral as:

A2
N = N

N∑
n=0

∫ Gn+1

Gn

( n
N − F )2

F (1− F )
dF, (3.7)
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with GN+1 ≡ 1. Integrating yields

A2
N = N

N∑
n=0

[(
n

N

)2
logF −

(
N − n
N

)2

log(1− F ) + 1− F

]Gn+1

Gn

. (3.8)

After some manipulation, a convenient form for computation is

A2
N = − 1

N

N∑
n=1

(2n− 1) {logF (zn) + log [1− F (zN+1−n)]} −N. (3.9)

By definition this statistic is non-negative.
MATLAB has both Kolmogorov-Smirnov and Anderson-Darling tests coded. The

KS test is provided by function kstest. The default is to test for the standard normal
distribution, which is what we want. The AD test is available as function adtest.
The default is to test for normality, but for unknown mean and variance, which are
estimated from the data. This isn’t what we want, so we specify the distribution. The
function makes use of 3.9, so we needn’t code it ourselves when using MATLAB.
Our MATLAB code for this problem is provided in Narsky and Porter (2014b).
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Figure 3.1 The critical value for the AD test as a function of significance. The red curve is
for N = 100 and the green for N = 10.

MATLAB’s adtest package uses the empirical formula of Marsaglia and
Marsaglia (2004) in order to compute the p value corresponding to a given value
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N KS power AD power
10 0.063 0.80
100 0.85 1

Table 3.1 Comparison of power for the KS and AD tests of standard normality on a dataset
drawn from a Cauchy distribution. All entries are for a significance level of 0.01.

of A2
N . The dependence of critical value on significance is shown in Fig. 3.1.

For small significances, the variation with sample size may be seen. Some further
discussion of the reliability of the p values computed in adtest is given below.
We first check whether the tests (and our code) are behaving as we expect. Fig. 3.2

shows the distribution of p values for data sampled from H0. There are 100,000
entries. These distributions should be uniform and indeed they look uniform. The
bin size is 0.01, so we are getting expected behavior at least down to the desired 0.01
significance level. That is, the first bin has approximately 1000 counts, or 1% of the
distribution. The χ2 test for uniformity yields p values of 36% for the KS test and
30% for the AD test.
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Figure 3.2 The distribution of test p values for data sampled from H0 for the KS test (left)
and the AD test (right). Each entry is for a sample of size N = 100.

Next, we compute the power as a function of significance for both tests, for data
sampled from the specified Cauchy. The results are shown in Fig. 3.3, both for N =

10 and N = 100. As expected, for both KS and AD the power is greater at a given
significance for larger sample sizes. The AD test does substantially better than the KS
test for both sample sizes. This is also seen in Table 3.1, where the power is tabulated
for a significance of 0.01.
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Figure 3.3 Power vs significance for the KS test (blue) and the AD test (red). Left: N = 10.
Right: N = 100. The top plots have linear scales in significance, the bottom logarithmic.
The power for the AD test is essentially one for the entire range of the lower right plot.

�The fine print – Anderson-Darling
We must insert a note of caution. The A2

N and p values returned in performing the
AD test are not necessarily valid, due to the limited numerical precision of the 64-
bit floating point representation. The problem occurs at two levels. First, a problem
appears when the cdf for the normal distribution approaches one. Because of the
long tail of the Cauchy, there may be observations where the normal cdf evaluates
to one due to the limited precision of the double precision (64-bit) floating point
implementation. This happens when the cdf is bigger than about 1 − 10−16. In this
case, Eq. 3.9 evaluates to Inf in MATLAB’s adtest. Second, the Cauchy tails are
so long that even for the low tail of the cdf, near zero, the evaluation of the normal
cdf may be smaller than the smallest non-zero floating point number. We note that
the smallest non-zero 64-bit floating point number in our case is about 2 × 10−308.
Then Eq. 3.9 evaluates to −Inf in adtest.
Faced with these problems, we have created a modified version of the MATLAB
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adtest package. The first problem is avoided if we can we assume a symmetric
distribution under H0, as holds in the present case, and then evaluate 1− F directly
using the lower tail of the distribution. This avoids taking the difference between one
and a number very near one. However, we then encounter the second problem when
far enough out on the tail. The second problem is greatly mitigated by evaluating the
logarithm of the cdf instead of the cdf itself. Our modified adtest does this, evalu-
ating the AD statistic with a call to adstatnormcdf, in turn using lognormcdf.
We provide these two functions at Narsky and Porter (2014c) and Narsky and Porter
(2014d). With these modifications, we plot the distribution of the AD statistic for
samples from the Cauchy distribution in Fig. 3.4. Note that without the modifica-
tions to adtest the values would nearly all be evaluated as infinity. The smallest
sampled value is 9.3 and the largest is more than 1010, above the upper limit of the
figure.
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Figure 3.4 The values of the AD statistic under H1 for N = 100. There are 105

observations. The overflow tail extends past 1010.

Figures 3.1 and 3.3 shows significances down to 10−4. The Marsaglia and
Marsaglia (2004) code implemented in adtest appears to be reliable down to
this level, but not necessarily below. Marsaglia does not discuss A2

N values above
10, and indeed discussions of the AD test are typically concerned with significances
only down to ∼ 0.01. Thus, it is not surprising to find that things break down if
we push the p value calculation below 10−4. Empirically, we find that the adtest
implementation of Marsaglia and Marsaglia (2004) breaks at p ≈ 6× 10−4/N . For
illustration, Fig. 3.5 shows the dependence of the p value from adtest on A2

N for
N = 50. The curve levels out at p = 1.2× 10−5 = 6× 10−4/50.
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Figure 3.5 The p value vs A2
N for N = 50, as computed in adtest (modified version).

It is, of course, possible to extend the validity to smaller probabilities, at least using
Monte Carlo methods. If you think it is important to do this however, you should first
ask yourself why.

�The fine print – Kolmogorov-Smirnov
The reader may be concerned that the dependence of power on significance for the

KS test is not smooth, especially for small samples, as seen in Fig. 3.3. The locations
of the singular points depend on N as demonstrated below. This structure may be
understood in terms of the discreteness of samples, emphasized by the substantial
tails of the Cauchy distribution.
First, it can be remarked that the KS test doesn’t look directly at probabilities, only

at differences. For example, even if an observation occurs where the null hypothesis
says the probability is zero, the null hypothesis may still be accepted.
Next, it is perhaps easier to think in terms of the critical values for the test rather

than the significances, although these are monotonically related. Consider for exam-
ple the negative region of the sampling space. The normal cdf quickly approaches
zero as we go more negative. The Cauchy, however, approaches zero much more
slowly, so there is an important probability to sample observations from the Cauchy
in the region where the normal cdf is approximately zero. These observations come
in discrete quanta, each such observation will contribute approximately 1/N to the
difference in cdfs. If the critical value is near a multiple of 1/N , singular behavior
may be seen.
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We can check this hypothesis by checking the location of the singular point in the
top left graph in Fig. 3.3. It occurs at a significance of approximately 0.06. For
N = 10 a signifcance level of α = 0.06 corresponds to a KS test critical value of
0.40. This is 4/N , that is, this singular point corresponds to the threshold for four
events in the low tail (or four events in the high tail) to make the test fail. The upper
range of the plot is too low for the 0.30 critical value, but at least one more singular
point is visible on the log plot at the bottom.
To see this effect more clearly, we make the corresponding plots for the smaller

sample sizes N = 5 and N = 6 in Fig. 3.6. For N = 5 there is a singular point at
significance level α = 0.03. For N = 5 and α = 0.03 the KS test critical value is
0.60, that is 3/N . For N = 6 there is a singular point at α = 0.07. For N = 6 and
α = 0.07 the KS test critical value is 0.50, that is again at 3/N .
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Figure 3.6 Power vs significance for the KS test (blue) and the AD test (red). Left: N = 5.
Right: N = 6.

Discussion:
The immediate conclusion from this study is that, for the situation considered, the

AD test is much better than the KS test. Since the KS test is widely used in particle
physics (and not the AD test), this should be taken as a warning that if you care
about power, you should think about what test to use (not necessarily either of those
considered here). This should not, however, be generalized to conclude that the KS
test is always inferior, it depends on the situation. An example of where it performs
well is provided in Freedman (1979) where possible seasonal variation is of interest.
It is easy to see why the AD test outperforms the KS test in this example. The AD

test places special emphasis on the tails of the distribution. The Cauchy distribution
has very long tails compared with the normal distribution, so the AD test works well.
The KS test, on the other hand, looks for the maximum difference in cdfs. Since
counting fluctuations tend to be largest near the peak of the distribution, the KS test
emphasizes this region. AKS test would bemore powerful, for example, in a situation
where there is a shift in location between the sampled and hypothetical distributions.
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The broad view is that different test statistics may be more optimal for different
situations. There is no “one size fits all”. The less you know about what you want to
test, the less powerful you can expect your test to be. The more you know, the more
knowledge you can put into your test and greater power can be obtained.
Note that, if the alternative hypothesis had been specified as the Cauchy with the

given parameters, the situation would be different. We no longer test for “normal”
against “not normal”, but rather for “normal” against “Cauchy”. This means our
possibilities are more constrained, and we should be able to construct more powerful
tests. In particular, both hypotheses are now simple hypotheses, and we can apply the
likelihood ratio test, which is known to be uniformly most powerful for a simple test
(section 2.5 of Narsky and Porter (2014a)).
Finally, we have seen that there may be numerical issues in the translation from

theory to practice. If you use a “canned” package, it may not have been designed to
handle your use case. To avoid mistakes, it is important to check for misbehavior.
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